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Abstract. Modern process optimization approaches do build on various quali-
tative and quantitative tools, but are mainly limited to simple relations in differ-
ent process perspectives like cost, time or stock. In this paper, a new approach
is presented which focuses on techniques of the area of Artificial Intelligence
to capture complex relations within processes. Hence, a fundamental value in-
crease is intended to be gained. Existing modeling techniques and languages
serve as basic concepts and try to realize the junction of apparently contradic-
tory approaches. This paper therefore draws a vision of promising future process
optimization techniques and presents an innovative contribution.
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1 Introduction

A great potential of Artificial Neural Networks (ANN) is well known since nearly four
decades. In general, those techniques copy the capabilities and working behavior of the
brain in simulating a network of simple nerve cells. Early ANN architectures go back
to the 1940s, numerous improvements can be found in late 1980 - 2000 ([34]). Because
of their ability to learn non-linear relations, to generalize correctly and to built biolog-
ically motivated efficiently working structures, ANN have been applied successfully in
various contexts such as music composition, banking issues, medicine, etc. Even simple
processes have been modeled on behalf of ANN ([4]).

Nowadays, in times of big data, enormous amounts of data are available and the
computing power has increased immensely and with this, the possibility to create bigger
and more complex networks. Although, the collection of processing data has become
easy, a neuronal modeling and decoding of complex processes has not been realized.

Hence, the following research will focus on deep learning with ANN with the in-
tention to answer the following research question: ”How can the capability to create
efficiently working structures of ANN be used for process optimizations?” This paper
intends not to draw an all-embracing description of concrete, technical realizations of
those novel process optimization techniques. It intends to set a first step to realize the
conjunction of the process modeling, simulation and optimization domain on the one
hand and the ANN domain on the other hand.
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Hence, sub research questions are:

1. ”How can a process modeling language be transported to a neuronal level?”
2. ”How can neuronal processes be modeled?”
3. ”How can neuronal models be used in process simulations?”
4. ”How can neuronal networks be used in order to optimize processes?”

Process Simulation 

Process Optimization 

Neuronal Simulation 

Neuronal Optimization 

Process Modeling Neuronal Modeling Neuronal Process 
Modeling (NPM) 

Neuronal Process 
Simulation (NPS) 

Neuronal Process 
Optimization (NPO) 

Process Domain ANN Domain ANN Process Domain 

Fig. 1: The ANN process domain as intersection of process and ANN domain.

As Fig. 1 visualizes, the ANN Process Domain is build on the following definitions:
A Neuronal Process Modeling (NPM) is referred to as the modeling of processes on
a neuronal level with a common process modeling language, the reinterpretation of
the common process modeling based on that understanding as well as their difference
quantity. The Neuronal Process Simulation (NPS) is referred to as the process simu-
lation of common process models considering ANN as knowledge model of process
participants (persons and machines), the simulation of common process models reinter-
preted as deep neuronal network, the simulation of neuronal processes reinterpreted as
organizational processes and their difference quantity. The Neuronal Process Optimiza-
tion (NPO) is referred to as common process optimization techniques that are realized
on a neuronal level (e.g. double-loop learning on a neuronal level), process optimiza-
tions that can be realized because of the learning capabilities of ANN in the domain of
common process models as well as their difference quantity.

The research approach is intended to be design-oriented as Peffers proposes ([25]
and [26]), such that the paper is structured as follows: A second section presents un-
derlying concepts, the third section derives objectives for a NPM, NPS and NPO. The
fourth section provides corresponding designs, followed by their demonstration and
evaluation. A final section concludes the paper.

2 Underlying Concepts

Starting with the selection of a modeling approach and the question, how processes
can be simulated and optimized in the first subsection, the second section refers to
underlying knowledge generation concepts. A further section introduces ANN.
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2.1 Process Domain

Following the fundamental procedure model for simulation studies of Gronau ([9]), a
model creation is realized after the modeling purpose has been defined, analyzed and
corresponding data has been collected. Hence, the following starts with modeling is-
sues. Afterwards, as the model is valid, simulation studies are realized and simulation
results collected, analyzed and interpreted. As changes or optimizations are required,
adjustments are defined and simulations tested until a sufficient solution has been iden-
tified. Best solution options will be implemented, of course. The following characterizes
required fields of the process domain following this procedural logic.

Process Modeling. Starting from a basic definition of models, which refer to simpler
mappings of relevant attributes of the real world with the intention to reduce the com-
plexity of the real world with respect to modeling objectives, process models can be
understood as a homomorphous, time-based mapping of a real-world system focusing
a sequence-based, plausible visualization ([9]). According to Krallmann et al. ([21]),
a system to be modeled consists of an amount of system elements, that are connected
with an amount of system relations. As it is limited by a system border, the system en-
vironment and the system are connected with an interface to exchange system input and
system output.

For the modeling of process systems, several process modeling languages can be
used. Considering organizational, behavior-oriented, informational and knowledge-ori-
ented perspectives, Sultanow et al. identify the Knowledge Modeling Description Lan-
guage (KMDL) to be superior in comparison to twelve common modeling approaches
([37]). Because of the analogy with a human brain as knowledge processing unit, es-
pecially a knowledge process modeling is focused. Here, Remus gives an overview of
existing modeling methods and a comparison of their ability to represent knowledge
([28, p. 216f]). ARIS, EULE2, FORWISS, INCOME, PROMOTE and WORKWARE
are only some representatives. Again, the KMDL can be identified to be superior be-
cause of its ability to overcome lacks in visualizations and analyses through the com-
bination of several views such as the process view, activity view and communication
view ([14]). This language has been developed over more than ten years. Having col-
lected experiences in numerous projects of various application areas such as software
engineering, product development, quality assurance, investment and sales, the evolu-
tion of the KMDL can be found in [12]. The current version refers to KMDL version
2.2, but the development of version 3.0 is in progress ([10]). In addition to the modeling
language, the KMDL reaches a fully developed research method ([11]).

With its strengths in visualization and the focus of knowledge generation, the KMDL
seems attractive for a transfer to the neuronal level. To the best of our knowledge, such
a transfer has not been realized yet in any other process modeling language. With its
intention to focus on the generation of knowledge following Nonaka and Takeuchi and
the intention to transfer the learning potential of ANN, the KMDL enables the modeling
of tacit knowledge bases and single or numerous knowledge transfers beside common
processing issues. Hence, the KMDL is selected as modeling language for the demon-
stration in section 5. The current paper builds on the wide spread KMDL version 2.2
([14]).
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Process Simulation. Once, a valid process model has been created, a dynamic se-
quence and variations of this process can be simulated. Aiming to gain insights within
a closed simulation system, the intention is to transfer insights to reality. For this, the
following pre-conditions have to be fulfilled: process models have to provide complete-
ness. This includes the registration of input data such as time, costs, participants, etc.
Further, process models have to provide interpretability of decisions. Here, values of
variables, state change conditions and transfer probabilities are included. Further, meta
information have to be considered, as for example the number of process realizations
within a simulation. Beneath further objectives, the following simulation scenarios can
be evaluated quickly and at low costs: current sequences of operations, plans and pro-
cess alternatives. Those evaluations can be realized before expensive adjustments within
current process models (so called as-is models) are implemented in the real world ([9]).

Process Optimization. As processes are adjusted with the intention to optimize them
in regard to a certain objective, one speaks from process optimization. All activities and
decisions that lead to a desired optimization of business processes, are designated as
business process optimization ([9]). The success of an optimization is measured by key
performance indicators, such as production time, failure and success rates, produced
components, etc. There can be found two basic approaches for business process opti-
mizations that are reflected in various methods and variations:

(1) An approach called Continuous Improvement Process and
(2) an approach called Business Process Reengineering.

(1) Originally inspired by a Japanese living and working philosophy called Kaizen,
the management concept realizing a never ending improvement of processes and prod-
ucts in small steps is referred to as Continuous Improvement Process, (CIP). Following
Imai, key principles are a feedback mentality and processes are reflected continuously.
The everlasting search for efficiency demands for the identification and improvement of
suboptimal processes, such that waste is reduced and eliminated. Further, the emphasis
lies on continual steps rather than giant changes, which is connected to the key princi-
ple of evolution ([18]). Corresponding management concepts follow cyclic procedures
and can be found in numerous variations: Shewhart Cycle ([36]), Deming Wheel ([5]),
a second Shewhart Cycle ([6]), PDSA Cycle ([7]), PDCA Cycle ([23]) and a second
PDCA Cycle ([19]). In general, those concepts contain planning activities (plan). Af-
terwards, the process is implemented and carried out (do). A feedback is collected and
compared to a planned output (check). Then changes are implemented constantly or re-
vised, before this cyclic procedure is started again. The feedback collection can gather
process data either coming from a process realization of the real world, or from a sim-
ulated processes. Since improvement ideas are generated during the process realization
and a focus lays on single processes, improvements are carried out bottom-up.
(2) The concept of Business Process Reengineering, (BPR), refers to the fundamen-
tal over-thinking of as-is processes ([15]). This is mostly connected with far reaching
changes up to a completely new design of processes and the organization itself. Process
improvements are designed as if the organization was built anew and current knowledge
and state-of-the-art techniques are considered additionally. Here, improvements are car-
ried out top-down and optimization results provide the following characteristics: Deci-
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sions are decentralized, process step sequences are reorganized and different process
variations can be considered. Further, the localization of working content is organized
meaningfully, the need for control and required coordination efforts are reduced and
centralized contact points (e.g. for customer requests) are established.

In conclusion, within the field of process modeling, the modeling language KMDL
is suitable for the use as NPM. Since the KMDL does not provide simulation structures,
yet, ANN simulation capabilities can be used for an enhancement of the KMDL and
enable NPS. Further, learning capabilities of ANN shall be used for the creation as
NPM purposes and optimization as NPO purposes. Here, a CIP is attractive for first
steps and a BPR can realize further potentials.

2.2 Knowledge Representation

Nonaka and Takeuchi distinguish between explicit knowledge and tacit knowledge
([24]). While the first can be verbalized and externalized easily, the second is hard to
detect. The following four knowledge conversion types can be distinguished:

– An internalization is the process of integration of explicit knowledge in tacit knowl-
edge. Here, experiences and aptitudes are integrated in existing mental models.

– A socialization is the process of experience exchange. Here, new tacit knowledge
such as common mental models or technical ability are created.

– An externalization is the process of articulation of tacit knowledge in explicit con-
cepts. Here, metaphors, analogies or models can serve to verbalize tacit knowledge.

– A combination is the process of connection of available explicit knowledge, such
that a new explicit knowledge is created. Here, a reorganization, reconfiguration or
restructuring can result in new explicit knowledge.

With the intention to focus on the potentials of human brains and its generation of
knowledge, the knowledge generation concepts of Nonaka and Takeuchi seem attractive
for modeling on a neuronal level. Since the KMDL is the only modeling language,
which builds on this concept, the KMDL is selected for demonstration purposes.

2.3 Artificial Neuronal Networks

Originally, neural networks were designed as mathematical models to copy the func-
tionality of biological brains. First researches were done by Rosenblatt ([32]), Rumel-
hart et al. ([33]) and McCulloch and Pitts ([22]). As the brain connects several nerve
cells, so called neurons, by synapses, those mathematical networks are composed of
several nodes, which are related by weighted connections. As the real brain sends elec-
trical activity typically as a series of sharp spikes, the mathematical activation of a node
represents the average firing rate of these spikes.

As human brains show very complex structures and are confronted with different
types of learning tasks (unsupervised, supervised and reinforcement learning), various
kinds of networking structures have established, which all have advantages for a certain
learning task. There are for example Perceptrons ([31]), Hopfield Nets ([17]), Multi-
layer Perceptrons ([33], [38], [1]), Radial Basis Function Networks ([2]) and Kohonen
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maps ([20]). Networks containing cyclic connections are called feedbackward or recur-
rent networks.

The following focuses on Multilayer Perceptrons and recurrent networks being con-
fronted with supervised learning tasks. Here, input and output values are given and
learning can be carried out in minimizing a differentiable error function by adjusting
the ANN’s weighted connections. For this, numerous gradient descent methods can
be used, such as backpropagation ([27], [1]), PROP ([29]), quickprop ([8]), conjugate
gradients ([16], [35]), L-BFGS ([3]), RTRL ([30]) and BPTT ([39]). As the weight ad-
justment can be interpreted as a small step in a direction of optimization, the fix step
size can be varied to reduce great errors quickly. The learning rate decay can be used
to reduce small errors efficiently and a momentum can be introduced to avoid local op-
tima. In this stepwise optimization, analogies to continuous process optimizations can
be found (see section 4.3).

Since neuronal networks model human brains and the knowledge of a certain learn-
ing task, the following refers to neuronal networks as neuronal knowledge models.
Those represent a current state of knowledge, the capability to generate new knowl-
edge through their activation and interaction and the possibility to transfer knowledge
or further process relevant objects within process simulations.

3 Objectives of an ANN Process Domain

As one assumes to have a given process model and one aims to consider a neuronal net-
work as a process participant’s knowledge model within the simulation of that process
model, the following objectives have to be considered coming from a modeling side:

1. Neuronal knowledge models have to be integrated within existing process models.
2. The same neuronal knowledge models have to be able to be integrated several times

within a process model.
3. Neuronal knowledge models have to be integrated within process simulations.
4. Modeled environmental factors (material such as non-material objects) have to be

integrated with considered knowledge models.
5. Outcomes (materialized such as non-materialized) of considered knowledge mod-

els have to be considered within the process model.
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Further, objectives have to be considered coming from a neuronal techniques side:

6. Neuronal tasks have to be considered while neurons follow biological models. This
includes both the neuron’s everyday business and learning processes.

7. Parallel neuronal task realizations have to be considered within neuronal networks.
8. Time-dependent neuronal behaviors have to be considered within neuronal net-

works.
9. Sequential neuronal task realization have to be considered within neuronal net-

works.
10. Different levels of neuronal task abstractions have to be considered in the neuronal

process modeling and simulation.
11. Sensory information and knowledge flows have to be considered within the mod-

eled neuronal network.
12. Actuator information and knowledge have to be considered as outcomes of neu-

ronal networks.

Each identified objective of those domains is relevant for the transfer of a process mod-
eling language and serves as input for the following sections.

4 Design of an ANN Process Domain

The visionary way to a novel process optimization is drawn with help of the following
subsections. First, a design for a neuronal process modeling is given. Then, a neuronal
process simulation design follows. Finally, the neuronal process optimization is de-
signed. All designs refer to the neuronal process circles of Fig. 2. Explanations can be
found in corresponding subsections.

(a) Neuronal Process 
Modeling Circle

(b) Neuronal Process 
Simulation Circle

(c) Neuronal Process 
Optimization Circle
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Fig. 2: Neuronal process circles.

4.1 Neuronal Process Modeling

The following gives definitions of the concept of neuronal modeling. For this, basic
definitions are given firstly, definitions based on them are given afterwards.

Neuronal knowledge objects are defined to be neuronal patterns, that evolve as cur-
rent over a certain period of time that causes a specific behavior of consecutive neurons.
Those patterns can reach from single time steps to long periods of time.
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Neuronal information objects are defined to be neuronal currents, that serve as inter-
face from and to the environment such as incoming sensory information and outgoing
actuator information. Here, stored information is included as well.

Considering those objects, a neuronal conversion is defined to be the transfer of neu-
ronal input objects to neuronal output objects. In accordance to Nonaka and Takeuchi
([24]), the following neuronal conversion types can be distinguished:

– A neuronal internalization is the process of integration of explicit knowledge (neu-
ronal information objects) in tacit knowledge. Here, experiences and aptitudes are
integrated in existing mental models.

– A neuronal socialization is the process of experience exchange between neurons
within a closed ANN. Here, new tacit knowledge such as common mental models
or technical abilities are created.

– A neuronal externalization is the process of articulation of tacit knowledge (neu-
ronal knowledge objects) in explicit concepts (neuronal information objects). Here,
patterns can serve to verbalize tacit knowledge.

– A neuronal combination is the process of connection of available explicit knowl-
edge (neuronal information objects), such that a new explicit knowledge is created.
Here, a reorganization, reconfiguration or restructuring can result in new explicit
knowledge.

Neuronal input objects are defined to be sensory information objects and knowledge
objects.

Neuronal output objects are defined to be actuator information objects and knowl-
edge objects.

An atomic neuronal conversion is defined to be a neuronal conversion considering
only one input object and only one output object.

Complex neuronal conversion are defined to be neuronal conversions considering at
least three neuronal objects of one neuron. Pure complex neuronal conversions consider
only one neuronal conversion type, while impure complex neuronal conversion consider
several neuronal conversion types such that one is not able to distinguish them.

Abstract neuronal conversion are defined to be neuronal conversions considering
neuronal objects of more than one transferring neuron such that one is not able to iden-
tify atomic knowledge flows of participating neurons.

In conclusion, those definitions are the basis for the transfer of process modeling
languages to the neuronal level. The logic behind this, which refers to the creation of
a practicable, neuronal models, is inspired by standard learning procedures (such as
[27] and [1] describe). The neuronal process modeling circle of Fig. 2 (a) intends to
visualize this. First, training and test data have to be prepared on base of as-is process
input and as-is process output data (plan). Then, current ANN are activated by available
data (do). During the check, an activation result is compared to as-is process output data,
such that neuronal errors can be generated. Weight adjustments are carried out during
the act phase. Since this process is repeated until a stopping criteria is reached, a cyclic
proceeding is established and results in neuronal process models. Since those can be
used within neuronal process simulations, this is the base for NPS and NPO. With this
design, an artifact for the first two sub research questions was presented.
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4.2 Neuronal Process Simulation

The following gives definitions of the concept of neuronal process simulation. For this,
basic definitions are given and a simulation framework is drawn.

For the simulation, common views of the KMDL are brought in a strict hierar-
chy considering a 1-m-relationship from lower granularity views to higher granularity
views. This is visualized in Fig. 3 by a neuronal process pyramid.
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Fig. 3: Neuronal process pyramid.

Here, one can see on the top, that available views of the KMDL (version 2.2) are ex-
tended with further neuronal views, as they have been defined in section 4.1. Since all
are supplemented with a neuronal simulation logic, they make the Neuronal KMDL. The
previously mentioned, strict 1-m-hierarchy refers to process views at the very top and
knowledge intensive process steps being concretized by a hierarchy of activity views.
Although in this figure only one hierarchy is visualized, each process step and corre-
sponding activities are broken down to atomar, neuronal views at the very bottom via
various abstract and complex neuronal views. Each represents a collection of connected
neurons and are referred to neuronal subnets from here on.

A further definition can be found in the realization of a single, discrete simulation
step. This considers the time-dependent activation of all participating neuronal subnets.
Some are activated by former subnets, some by an input of the simulation environment
and some by a certain initial input (e.g. for tests by the simulation instance).

The realization of a simulation sequence follows the underlying process model of
lower granularity levels. Hence, some subnets are not activated at all while some are ac-
tivated simultaneously and some only under conditions. As some subnets are activated
repetitively during the simulation sequence, their current knowledge state can be reused
during later activations.

The production of realistic and plausible simulation results requires a successful
training for participating subnets showing sufficient approximation results and gener-
alization characteristics each. Systematic simulation runs can then be controlled by a
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simulation control framework of a higher order. Here, various simulation scenarios can
be realized and compared easily.

The simulation realization is visualized with the neuronal process simulation circle
of Fig. 2 (b). It includes the following phases: First, simulation scenarios have to be
prepared in order to reflect as-is processes and to-be processes (plan). Then, current
neuronal models are used on base of corresponding data (do). During the check, a neu-
ronal behavior is compared to expected results, such that insights can be generated. If
more simulations are required, different of optimized neuronal process models need to
be used in NPS or scenarios of the next simulation need to be adjusted, then scenario
changes are carried out during the act phase. Since this process can be repeated until a
stopping criteria is reached, a cyclic proceeding is established and results in neuronal
process simulations.

In conclusion, those definitions are the basis for knowledge transfers and show
knowledge generation and forgetting processes during a neuronal process simulation,
which can be compared to a company’s intentional behavior. Further, this is the foun-
dation for neuronal process optimizations. With this design, an artifact for the third sub
research questions was presented.

4.3 Neuronal Process Optimization

Focusing on CPI corresponding to Kaizen, the optimization of organizational processes
and learning processes with ANN have the following in common.

Both require a set of input factors. The ANN is activated with a selected set of
parameters, which mostly is a codification of real world meanings on base of simulated
currents. Organizational processes are fed with input parameters, which are required
during the realization of that process.

Further, both produce a set of output factors. ANN built on input activations, which
are transferred and manipulated in various ways, such that a codification of real world
meaning can be generated. Organizational processes combine, manipulate and trans-
form a given input, such that an output is produced. Following the idea of CPI, both
kinds of outputs can serve as environmental feedback and indicate a fit in planned and
achieved performances.

Measured by key performance indicators, the performance of a process is improved
in small steps. This reflects the CPI idea of evolution as follows. Organizational pro-
cesses are improved by a change of any process parameters: A process can be realized
on behalf of better production components, a change in process order, a better quali-
fication of process participants, etc.. This all results in a better process performance.
Following Plaut et al. ([27]) and Bishop ([1]), the process of learning with neuronal
networks is realized through the adjustment of the network’s weights4w(n) in depen-
dence of a prediction error E, as Eq. 1 intends to clarify.

4w(n) = m4w(n−1)−α
∂E

∂w(n)
, where 0≤ m≤ 1. (1)

Here, α is standing for the learning rate, m is standing for the momentum and n is
standing for the current training interval. As the performance of the current neuronal
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model is improved, the error E is reduced stepwise. Here, the following two types of
interpretations can be drawn and be connected to CPI-related issues of the efficiency:

(1) Interpretations of organizational processes as ANN.
(2) Interpretations of biological processes under economic constraints.

(1) As the improvement of organizational processes is interpreted as a kind of human
version of gradient descent method, the desired performance of organizational pro-
cesses can be interpreted as discrepancy or error E, and process changes can follow
biological plausible techniques. Hence, an ANN training procedure can be used either
to establish required models for neuronal process simulations, improve as-is-process
models during the neuronal process optimization or establish new process models in the
sense of BPR during the neuronal process optimization. During those optimizations, the
following error environments can follow this interpretation plausibly.

E

w

E

w

E

w

(a) Increase Step Size (b) Avoid Traps (c) Fast Convergence

Fig. 4: Error environment examples showing heterogeneous characteristics.

Fig. 4 shows three commonly known error plateaus, which either can stand for the
prediction error reduction of ANN during the training process or for discrepancy re-
duction of a desired performance of organizational processes during the improvement.
The current optimization level is visualized by a black ball rolling metaphorically to the
global optima. The optimal direction of that moment is indicated by an arrow.

As the learning rate α is adjusted intelligently, numerous cost intensive training runs
can be avoided. Fig. 4 (a) shows that the increase of a small step size can speed up the
search for the global optima, which can be found in the very right of the diagram. The
reduction of continuous process improvement runs can be achieved with help of the
expertize and experience of process experts, who consider better changes and a greater
number of changes in one run.

As the momentum m is increased intelligently, an oscillation between local error
plateaus can be avoided because of the consideration of recent weight adjustments.
Fig. 4 (b) shows that the use of a momentum can help to avoid traps during the search
for the global optima because several local optima can be overcome because of this
moment of inertia. Those can be avoided through the use of standards in the context
of continuous process improvement runs. These can help to disregard current trends,
irregularities and invalid runs reasonably.

As the learning rate and momentum are adjusted intelligently during the learning
process, an effective optimization can be carried out. Fig. 4 (c) shows that a great step
size is reasonable at the beginning but has to be decreased at the end, such that a global
optima can be identified and a great step size does not oscillate around the global op-
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tima. The efficient reduction of continuous process improvement runs can be realized
with help of patterns. Here, best practices, routines and proceeding models can help
to identify best process options quickly and implement attractive behaviors of changes
reasonably.
(2) As the improvement of ANN processes is interpreted as a kind of economic ver-
sion of organizational mechanisms, the human brain is restricted by the same economic
constraints like time, quality and costs. The desired performance of organizational pro-
cesses can be injected as E in backpropagation approaches and process changes can
follow industry specific techniques.

If organizational processes are optimized in regard to time, either the throughput
time is reduced (e.g. in production processes) or the number of processes is increased,
that are realized in a given period of time (e.g. a production date). Analogically, the
human brain tries to map a time-based behavior as it is relevant for a corresponding
task, e.g. fishing with a spear. Here, a complex sequence of actuator realizations within
specified time frames is essential.

Optimizing organizational processes in regard to quality refers to the improve of
quality factors that are connected to the process outcomes. As example, one can find
a better production surface measured by the rate of broken surfaces per month. Ana-
logically, the human brain tries to shrink prediction errors, such that the rate of correct
predictions within the corresponding task can be increased and qualitative better results
can be realized.

As organizational processes are optimized in regard to cost, the cost-intensive use
of resources during the process realization is reduced. This can be connected to the
use of less and cheaper materials if available, the reduction of required space if pos-
sible, or the realization of further tasks in parallel, etc. Since the learning process of
the human brain is limited in space (by the size of the human’s head), the positioning
of neurons representing a certain task and the creation of further connections also is
relevant. Additionally, learning processes and the working of the human brain is cost-
intensive. Here, proteins and transmitter are required, whose availability is limited, too.
Further, they can not be substituted since cheaper materials are not available at all and
a cost-efficient working is essential.

In conclusion, the approximation of tasks with neuronal networks can try to realize
a trade-off in a maximal number of learned tasks, their approximation accuracy in time
and cost-based constraints. As a meaning of each element of the neuronal network can
be mapped to an interpretation in the real world, changes in the neuronal network during
the learning process can be interpreted directly within the corresponding context of their
process representation. Being inspired by these analogies, various tools of both sides,
the process domain and ANN domain show promising application possibilities within
the neuronal process optimization.

The neuronal process optimization circle of Fig. 2 (c) intends to underline this. The
preparation of input data coming from as-is processes and to-be process output data
coming from to-be simulations is realized during the plan phase. Then, current neuronal
models are activated by available data of selected scenarios (do). During the check, an
activation result is compared to to-be process output data, such that neuronal errors
can be generated. Weight adjustments are carried out during the act phase. Since this
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process is repeated until a stopping criteria is reached, a cyclic proceeding is established
and results in optimized neuronal process models.

With this design, an artifact for the fourth sub research questions was presented.

5 Demonstration of an ANN Process Domain

The following subsections show the realization of the neuronal process modeling on be-
half of the KMDL. For this, theoretic examples and corresponding process models are
given, that visualize basic definitions. Then, practical examples follow. Five examples
for neuronal process simulations shall visualize the interpretation of process models as
deep neuronal networks and clarify the interplay of simulation output and expectable
results. Further, two examples demonstrate the realization of neuronal process optimiza-
tion.

5.1 Theoretical Example Models

The definitions from section 4 are visualized in the following three theoretical exam-
ples: Firstly, atomic knowledge conversions on a neuronal level can be found in Fig. 5.

Fig. 5: Atomic neuronal conversions.

In this figure, one can see a neuronal socialization in the top left, a neuronal exter-
nalization in the top right, a neuronal combination in the bottom right and a neuronal
internalization at the bottom left. All of them were visualized in the activity view of the
KMDL.

The entity of persons as process participants (yellow) was mapped to neurons who
interact on a neuronal level. In consequence, the entity of tacit knowledge objects (pur-
ple) are connected to neurons. The entity of the conversion (green) was mapped to the
activity of a neuron that generates new knowledge based on the transfer of its input
objects. The environment as well as interaction possibilities with the environment are
modeled with the entity of a database (white rectangle). Further, neuronal information
objects are stored within a database. In consequence, the shape of information objects
(red) are connected to those databases.

Secondly, complex neuronal conversions are visualized in Fig. 6.
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Fig. 6: Complex neuronal conversions (pure).

Again, in this figure, one can see a neuronal socialization in the top left, a neuronal
externalization in the top right, a neuronal combination in the bottom right and a neu-
ronal internalization at the bottom left. All of them were visualized in the activity view
of the KMDL.

Following the KMDL, conversions of the activity view can be repeated without
control flow. Hence, each neuron can develop several neuronal knowledge objects or
neuronal information objects over time. Hence, modeled neuronal objects do represent
the identified current knowledge of a certain neuron. Therefore, a strict sequence mod-
eling can be realized with help of the listener concept or the process view.

Thirdly, an abstract neuronal conversion can be found in Fig. 7.

Fig. 7: Abstract neuronal conversion.

In this figure, one can see several impure complex conversions simultaneously, for
which reason the visualized arrows are black, as the KMDL asks for. Since more than
one neuron (B1 and B2) is considered on that process model, an abstract level of neu-
ronal conversions has been visualized.

With those examples, the first sub research question was answered.

5.2 Practical Example Models

Using basic definitions of a neuronal process modeling, their transfer to practical exam-
ples coming from the industry is intended. The following gives four practical examples.
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All of them serve as a fruitful domain to visualize neuronal modelings, simulations and
optimizations. Their modeling has been carried out on base of the neuronal modeling
circle of Fig. 2 (a). Required views look similar to examples of section 5.1, but the
labels show concrete meanings.

A first example focuses on the organization of goods depots. Those can follow var-
ious strategies. For example fix places can hold reservations for certain goods. Alterna-
tively, goods can get an arbitrary place, which considers current free spaces. Here, the
human brain can serve as biological inspiration for strategies to store memories and can
optimize the depot organization of goods.

A second example focuses on production processes. Here, goods are not needed
constantly. Meanwhile, they can be stored in goods depots and storage areas. Once, they
are needed, they can be brought to the corresponding process step with help of trans-
portation elements ([13]). As they are not required, a transportation element pauses and
buffers currently not needed goods. Alternatively, materials can be considered as just-
in-time inventory, such that they do not have to be stored in expensive goods depots.
Here, the velocity of transportation elements is adjusted in dependence to the produc-
tion order. Analogies can be found in the human brain. As the storage of goods, the
storage of memories can be organized or vice versa. A short-term-memory (current
currencies) deals with neuronal knowledge objects similarly to just-in-time inventory.
Here, neuronal knowledge objects are used at consecutive neurons as they are needed.
Buffered goods are stored within long-term-memories similar to goods depots. Here,
currencies are unlocked as they are needed within the current process.

A third example focuses on specializations of production machines. As production
processes can be considered as a single process network, machines are part of them.
Since machines can show high specializations, the organization of production processes
can be inspired by the organization of the human brain. Here, certain areas are respon-
sible for a certain task and show high specializations as well. For example the auditory
cortex deals mainly with acoustic information, the visual cortex mainly with optical
information, etc.

A fourth example focuses on outsourcing of tasks: Often, an efficient task realization
does not contain the realization of all process steps within the own company. As parts
can be outsourced to external parties, analogies can be found in the human brain as
well. Here, speed relevant actions can be initiated by reflexes. This is efficient since the
realization of a full cognitive task processing would be to slow. As an example, one can
imagine the start of a sprinkler system. In case of a fire, it was not effective to create
action alternatives, evaluate and select best options but start fighting a fire immediately
like a reflex.

With those examples, the second sub research question was answered.

5.3 Practical Example Simulation

On base of the neuronal process simulation circle of Fig. 2 (b), the following example
focuses on verifying of the spiral of knowledge of Nonaka and Takeuchi. Their model
refers to the broadening of an epistemological knowledge base through the repetitive
use of conversions between ontological entities ([24]).
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Firstly, the simulation scenario is prepared during the plan phase. For this, neuronal
process models have been created, as they can be found in Fig. 8.

Company 

Legend: 
         Knowledge Spiral  
         Hierarchial Border 
         System Border  
 
Neuronal Conversions: 
1.  Inner-person specific 
2.  Person specific 
3.  Team specific 
4.  Company-wide 
5.  Corss-company-wide 

1 

2 3 4 

5 

Fig. 8: Neuronal process simulation for spiral of knowledge proof.

Within a triangle representing the system border of an example company, one can
find a three-level hierarchy of divisions and corresponding processes by the positioning
of several neuronal process pyramids, as they were presented in Fig. 3. Within the exam-
ple, a first level represents operational divisions, such as sales, production, marketing,
etc. A second level stands for processes of mid level managers, being responsible for
operational divisions. The top management can be found on the third floor. Within this
system border, the simulation scenario realizes the knowledge transfer of an innovation
idea that is generated by a person during the production of goods following the com-
pany’s innovation process. Hence, corresponding simulation parameters are prepared.

Secondly, the simulation is carried out during the do phase. Here, five forms of
knowledge transfers can be detected. Those were visualized with help of spirals in
Fig. 8.

Inner-person specific neuronal conversions can be found on base of the first on-
tological entity: persons. As a production is realized by the manual work of a single
person, an idea of a production process change is generated. Here, a simulation can
carry out neuronal conversions of this individual via available views of the correspond-
ing neuronal process pyramid, such that the generation of that idea becomes visible.

Person specific neuronal conversions can be found on base of the first ontological
entity as well. Here, the production process innovator follows the underlaying process
model and presents the intended process change to a colleague. Their conversation and
corresponding conversions can be simulated on base of their individual, inner-person
specific process pyramid. Those two are intersecting at the process level. With this, an
interaction can be simulated with help of two person specific neuronal networks. The
interaction itself can be controlled by an interaction network, characterizing that process
step.

Further forms of transfers refer to team specific neuronal conversions. Collaborating
in teams, the innovator could convince further divisions of his idea in group discussions.
Since each participant provides its inner-person specific neuronal pyramid, a group-wise
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conversion builds on a collective knowledge base as well. This team knowledge is only
accessible in this specific cultural circle.

As several teams and divisions are interacting, company-wide neuronal conversions
can be found at the fourth ontological entity, which refers to the entire company. Fol-
lowing the underlaying process model, a suggestion is prepared for the corresponding
mid level manager. This person weights suggestions and prepares contracts for the top
level manager. Here, their interaction and the production of corresponding knowledge
and information objects can be simulated on base of neuronal process simulations.

Further forms of transfers can be identified at the ontological entity of companies
as well, which are called cross-company-wide neuronal conversions from here on. As
interactions go beyond the company-wide system border, e.g. because of the integra-
tion of external consultants in contractual negotiations with the top management and
mid level managers concerning cross-company-wide corporations, or open innovation
projects, a neuronal simulation can carry out knowledge transfers beyond that border
and identify outgoing and incoming objects. With this, an optimal trade-off of chances
and risks can be identified.

Thirdly, simulation results are compared with the expected behavior during the
check phase. Through the simultaneous activation of several neuronal subnets, that are
connected by networks representing underlaying current process models, various pro-
cesses and their interactions can be simulated via deep neuronal network techniques.
Those can show surprising side effects, such that a plausibility check is essential. In
this example, this refers to the question if the initial innovation idea can be transfered
through the repetitive use of conversions between selected ontological entities. When
the epistemological knowledge base is broadened through this, the spiral of knowledge
can be proven with neuronal process simulations.

Fourthly, if simulation results are not clear and plausible, simulation parameters
can be changed during the act phase, such that the knowledge spiral can be proved or
disproved in next simulation runs.

This example shows that the organizational working can be considered as deep neu-
ronal network. Their results of neuronal process simulations serve as reference scenario
and build the foundation for neuronal process optimizations. With this example, the
third sub research question was answered.

5.4 Practical Example Optimization

The following shows an optimization example, which is limited by given place con-
straints. This underlines the relevance of a physically interpretable neuron positioning,
which is best situated within the real world space. Here, Augmented Reality visualiza-
tions become attractive because of their intersection of the real and augmented world.
Further, without the possibility to situate models within the real world, 3D models can
give a spacial impression of those examples as well.

So, imagine to have a shopping mall with various floors. Those are connected with
moving stairs. Here, relevant real world objects can serve for neuronal process opti-
mizations. Hereunder, one can find neurons representing shops. Those are placed inside
of the building modeling their real physical position. Further, one can find neurons for
moving stairs, which can be found in the building center. Hence, neuronal subnets can
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stand for available routing points. The movement of customers can be represented by
currencies routed from neuron to neuron. Since the shopping mall is limited by walls,
the physical size of single shops within the building and the number of routing neurons
is strictly limited.

A visualization of the building, the positioning and connecting of routing neurons
can be found in Fig. 9. Here, three sub-figures visualize an as-is neuronal process model
(NPM) (a) and two neuronal process optimization (NPO) results (b) and (c). Those have
been realized following the neuronal process optimization circle of Fig. 2 (c) with differ-
ent optimization objectives. Neuronal input and output objects have not been visualized
in Fig. 9 at all because of a better clarity. Since an optimization shall focus on three
types of customers, different colors have been used for each type.

	
  

(a) Modeling & Simulation.
	
  

Legend:        Type 1         Type 2          Type 3 

(b) Optimization 1.

	
  

(c) Optimization 2.

Fig. 9: Neuronal process optimization in shopping mall.

In Fig. 9 (a), one can see an as-is model, which was created with help of real-world
process data and an ANN training process. Here, one can see a positioning of specific
shops as it was intended by the shopping mall organizers. The simulation performance
of this organization serves as reference point for a neuronal process optimization. Here,
the position of real world shops within the shopping mall is questioned. Further, the
adjustment of the shop sizes is addressed.

In Fig. 9 (b), one can see the result of a first NPO focusing on the maximization of
the shopping mall profit. During the plan phase, the training data was manipulated in
regard to the desired profit increase. Hence, the corresponding data output represents
the intended behavior of to-be processes. Since current neuronal process models did not
reflect the desired performance, which became clear because of its activation during the
do phase, discrepancies were detected during the check phase. Then, process optimiza-
tions have been carried out during the act phase through the adjustment of the network’s
weights. Those lead to a clearance in the network’s connections. Since not all connec-
tions were required, a learning and adaption process lead to a deletion of unattractive
connections. The different size of connections of the result indicate that some shops are
visited more frequently than others and lead to more profit. In general, a cluster for each
customer type can be identified. Customer type 1 can mainly be found on the left of the
building. Shops on the third floor mainly attract customer type 2 and floor 1 and 2 of
the right are attractive for the third customer type. Shop sizes of the real world can be
adjusted correspondingly.
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In Fig. 9 (c), one can see a second result of a NPO focusing on the attraction of
new customers. Here, the training data was manipulated in regard to the desired cus-
tomer increase during the plan phase. Further training runs taking that data into account
lead to a different clearance in the network’s connections (phases do, check, act). The
positioning of the most frequently visited shops (showing the largest connections) can
be found on the ground floor and their real world shop size can be optimized. Hence,
the shopping mall satisfies most of the customers quickly and attracts new customers
efficiently. Further shops that are not attracting a large number of customers have been
spread around the entire building, such that bargains can be provoked.

The example describes a neuronal process optimization on base of biologically in-
spired learning procedures of the human brain. In regard to a specified process improve-
ment dimension, an as-is process was optimized in regard to two directions. A change
within a deep neuronal network leads to direct interpretable changes in the real world.
With those examples, the fourth sub research question was answered.

6 Evaluation

Faced with the demonstration artifacts of the previous section, objectives of section 3
have been considered as follows.

Objective 1 can be fulfilled by modeling neuronal knowledge models within the
activity view characterizing a certain person. Here, a decomposition, such as the neu-
ronal process pyramid it provides, rises the process model granularity of the selected
activity and connects all neuronal process models with common process models. Since
the common activity view characterizes a corresponding process task of the process
view, neuronal knowledge models are integrated within existing process models. Since
a neuronal network characterizes entities of persons, a trained neuronal network can be
reused in any activity (objective 2). As neuronal knowledge models can be activated and
can evolve over time, they can be integrated within discrete process simulations easily
(objective 3). From a common activity view modeled environmental factors (material
such as non-material objects) serve as interface for the activity view on a neuronal level.
Hence, objective 4 and objective 5 are considered as well.

Further, objectives have been considered coming from a neuronal technique side
as follows: As learning with neuronal networks is not affected by the here presented
concepts, neuronal tasks can follow the neuron’s biological models (objective 6) in
both, neuronal process simulations as section 5.3 shows in an simulation example and
section 5.4 in two optimization examples. A parallel neuronal task realization within
neuronal networks has been considered (objective 7) as can be seen in Fig. 6 (neuronal
socialization and neuronal externalization) and Fig. 7 (abstract neuronal conversion).
Here, at least two neurons realize a parallel task processing. Objective 8 can be met
as soon as recurrent connections are considered within the neuronal process models.
Then, time-dependent neuronal behaviors are considered within neuronal networks. A
sequential neuronal task realization within neuronal networks can be considered within
the neuronal process modeling (objective 9), as presented activity views are character-
izing corresponding tasks of the process view. Since logical control-flow operators can
be used here, a sequential neuronal task processing can be modeled easily. This can
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be seen in the examples of section 5.3 and 5.4. Further, a time-dependent behavior of
a network modeled within the activity view can result in a sequential task processing.
Objective 10 has been met as can be seen in Fig. 7. Here, the task ”Neuronal Percep-
tion of Neuron Group B” models the activity of ”Neuron B1” and ”Neuron B2” on an
abstract level. Further, knowledge objects, information objects, neurons and databases
can be grouped and visualized on an abstract level. Sensory information and knowledge
flows can be considered within the modeled neuronal network as can be seen in Fig. 5
and Fig. 6. In both figures, possible sensory information flows can be seen at the bottom
(neuronal internalization and neuronal combination). Possible knowledge flows can be
seen in both figures in the top (neuronal socialization and neuronal externalization).
Objective 12 can be met as follows: Actuator information and knowledge have been
considered as outcomes of neuronal networks. This can be seen in Fig. 5 and Fig. 6.
In both figures, possible actuator information flows can be seen on the right (neuronal
externalization and neuronal combination). Possible knowledge flows can be seen in
both figures on the left (neuronal socialization and neuronal internalization).

Considering the here presented evaluation of given objectives, it becomes clear that
an idea for every objective has been identified. This supports the functioning of the
transfer of the KMDL to a neuronal level, such that a neuronal process modeling, a
neuronal process simulation and a neuronal process optimization can be built on that
base.

7 Conclusion

In this paper, a visionary way to novel process optimization techniques has been drawn
and the base has been realized on behalf of the KMDL. Main contributions and scien-
tific novelties are the following: Definitions of a neuronal process modeling, neuronal
process simulation and a neuronal process optimization have been created. Objectives
of transferring a common process modeling language and a so called ANN process
domain have been identified. Further, definitions for those concepts have been created
and a modeling language has been transferred to the neuronal world. This includes the
reinterpretation of existing shapes of the KMDL. On that base, theoretical examples
have been visualized on behalf of the KMDL. Further, analogies for the use of the here
presented concepts in the industry context have been identified. With this, the drawn
transfer has been applied and proven. Hence, the first sub research question was an-
swered.

The second research question was answered with the design of the neuronal process
modeling circle. Its application was demonstrated in the second example, such that
industry analogies could have been identified. Further, it was required for the creation
of neuronal models, which were used in NPS in the third example. Lastly, it was used
for the model creation of the as-is process in the fourth example.

Further, the neuronal process simulation circle and the neuronal process optimiza-
tion circle were designed and analogies of neuronal learning procedures and process
optimization procedures were drawn. Each application was demonstrated in the third
and forth example, such that the third and fourth sub research question were answered.
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Hence, the following potentials are suitable for next steps: The function concretion
of previously presented concepts will be realized. Then, those will be realized as quan-
titative neuronal process modelings, simulations and optimizations. Further, the com-
parison of the here presented concepts with traditional results was attractive as well.

The application of the here presented concepts are assumed to cause a radical value
increase. As simple and complex relations in different process perspectives like cost,
time or stock can be considered, the prediction quality of process simulations can
strongly improve going beyond the prediction quality of simple regression models or
humans. Further, common optimization potentials can be estimated efficiently. Addi-
tionally, new optimization approaches and optimization potentials can be identified.
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