
ᝠ ካ ஔ ᐲ
Computer Education

ѬዝՂὉG642ڏ˗

2

 ኄ 12 ర No. 12
2020 ࣲ 12 థ 10 ெ Dec. 10 2020

'BTU�5SBJOBCMF�$BQBCJMJUJFT�JO�4PGUXBSF�
&OHJOFFSJOH�4LJMM�%FWFMPQNFOU�JO�-FBSOJOH�

'BDUPSJFT

André Ullrich*, Malte Teichmann, Norbert Gronau

Abstract: The increasing demand for software engineers cannot completely be fulfilled by
university education and conventional training approaches due to limited capacities. Accordingly,
an alternative approach is necessary where potential software engineers are being educated in
software engineering skills using new methods. We suggest micro tasks combined with theoretical
lessons to overcome existing skill deficits and acquire fast trainable capabilities. This paper
addresses the gap between demand and supply of software engineers by introducing an action-
oriented and scenario-based didactical approach, which enables non-computer scientists to code.
Therein, the learning content is provided in small tasks and embedded in learning factory scenarios.
Therefore, different requirements for software engineers from the market side and from an academic
viewpoint are analyzed and synthesized into an integrated, yet condensed skills catalogue. This
enables the development of training and education units that focus on the most important skills
demanded on the market. To achieve this objective, individual learning scenarios are developed. Of
course, proper basic skills in coding cannot be learned over night but software programming is also
no sorcery.

Key words: learning factory; programming skills; software engineering; training

1 Introduction

The worldwide demand for Software Engineering (SE)
skills-that is understanding core computer science
concepts and applying engineering knowledge in a
social and economic context for shaping software
artefacts[1]- is currently increasing[2]. The annual

��$QGUp�8OOULFK��0DOWH�7HLFKPDQQ�DQG�1RUEHUW�*URQDX�DUH�
with the Department of Business Informatics, University
of Potsdam, Potsdam 14482, Germany. E-mail: aullrich@
lswi.de; mteichmann@lswi.de; ngronau@lswi.de.
* To whom correspondence should be addressed.
Manuscript received: 2020-02-01; revised: 2020-04-02;
accepted: 2020-09-22

output of universities and internal training programs
of companies, which highly rely on IT skills, are by
IDU�QRW�VXI¿FLHQW�WR�IXO¿O�WKLV�GHPDQG[3]. The situation
is further aggravated by the fact that conventional
capabilities of a typical undergraduate SE student
do not align well with industrial needs[4]. One
area where the gap between demand and supply is
particularly high is the manufacturing industry, since
developments like the 4th Industrial Revolution[5]
DQG�,QWHUQHW�RI�WKLQJV�SURSHO�VSHFL¿F�GHPDQG�IRU�6(�
capabilities. However, a university diploma is not
for all software engineering capabilities necessary.
Especially fast-trainable-capabilities (FTC) can be
learned without a time-consuming academic degree.

ቦᎄՂὉ1672-5913(2020)12-0002-09

ኄ 12 ర 3

ኄӡОࡓ˗ൗᣄ͈ࢺሮஔᐲڎᬅᆑᝧ͘
ἷ$IJOB�&VSPQF�*OUFSOBUJPOBM�4ZNQPTJVN�PO�4PGUXBSF�&OHJOFFSJOH�&EVDBUJPOἸ

We refer to FTC, in the following, as quickly and
little time-consuming trainable programming skills
with a user centered development focus (and further
IT capabilities). Besides conventional training and
education measures, innovative approaches to fulfil
the demands for SE skilled employees can be applied.
In this contribution, a solution approach to a portion
of the demand and supply gap is provided that enables
to train workers without or with insufficient SE
VNLOOV�WR�SHUIRUP�VHYHUDO�WDVNV��IRU�ZKLFK�IXOO�ÀHGJHG�
software engineer was needed before. This approach
aims at enabling workers to easily undertake first
steps into software engineering. To achieve this goal,
a procedural model was developed that starts with SE
requirement collection from both theory and practice.
First, diverse competence models for software
engineering were analyzed to identify a model that
sets the framework for structuring the FTC, which is
systematizing the competences and skills queried in
practice. Therefore, job advertisements for software
engineers on ten highly visited job portals were
queried, using the service ALEXA, and then analyzed,
synthesized, and clustered into university level and
non-university level skills. The latter are addressed by
short tasks, building on a scenario and problem-based
didactical approach in a learning factory[6].

The remainder is structured as follows. Skill
classification approaches for SE are introduced
in Sec. 2. Capability requirements for software
engineering are identified in Sec. 3. The didactic
concept of our learning factory approach is presented
in Sec. 4. Two learning tasks are shown in Sec. 5.
Conclusions are drawn Sec. 6.

2 Skill Classification Approaches in
Software Engineering

Diverse approaches to structure software engineering
skills exist, e.g. according to core principles,
essential competences, or diverse skill facets. The
software engineering body of skills (SWEBOS)
framework focusses on non-technical skills such as

collaboration, communication, self-organization,
personal competences and problem awareness[7].
Paper[8] differentiate the roles system analyst,
software designer, computer programmer and
software tester. They emphasize that communication
skills, interpersonal skills, organizational skills,
analytical and problem-solving skills, being a team
player, the ability to work independently and being
open and adaptable to changes are the most relevant
soft skills for these roles. Paper[9] apply the Critical
Incident Interview technique for determining job
requirements for software engineers and analyze
competences identified by software managers.
They derived 38 essential competences for software
engineers, structured into the facets interpersonal
skills, situational skills, personal attributes and task
accomplishment competences, focusing on both
soft and technical aspects. Paper[10] differentiates
between a body of core computer science concepts,
relating e.g. to data structures, algorithms or
programming languages, as technical foundation
and core content, which is applied through a body
of engineering knowledge and complemented by
a social and economic context of artefact creation.
Paper[1] build on that and emphasize diverse
programming languages. The Software Engineering
Competency Model (SWECOM) comprises of the
elements cognitive skills, behavioral attributes and
skills, related disciplines, requisite knowledge,
and technical skills. Skill areas for the latter are,
inter alia, human-computer interaction, software
measurement, software configuration management,
software safety and security or software engineering.
Paper[11] uncovered in interviews with software
engineers 53 attributes of great engineers, structured
into the categories personal characteristics, decision
making, teammates, and software product. Paper[12]
conducted a literature review with a focus on
soft skills and identified self-reflection, conflict
resolution, communication, and teamwork as top
taught skills. The Software Engineering Body of
Knowledge (SWEBOK) lists as relevant software

20204
ᝠ ካ ஔ ᐲ
Computer Education

knowledge areas: requirements, design, construction,
testing, maintenance, configuration management,
quality, engineering tools and methods, engineering
process, and engineering management. Knowledge
of related disciplines such as systems engineering or
computer science is important too [13].

To identify a theoretical fundament for FTC in
software engineering and to enable non-software
engineers to conduct software engineering tasks on
WKH�EDVLV�RI�D�GLGDFWLFDO�DSSURDFK�WKH�FODVVL¿FDWLRQ�
approaches are analyzed regarding four comparison
criteria: (1) differentiation fast vs. long trainable
capabilities, (2) differentiation of programming
language skills, (3) explicated didactical approach,
and (4) user-centered software development focus
enables.

While paper[7] and paper[9] fulfil at least
criterion (4), the paper[8]. does not meet any criteria.
Paper[12] present a didactical approach but do
not address another criterion. A specific didactical
focus can also be found in the paper[10], which

meets all criteria except a clear differentiation of
programming language skills. Criterion (2) seems
difficult to address: only paper[11] explicitly
differentiate between programming languages.
On the other hand, they neither distinguish
between fast and long trainable capabilities nor
present a didactical approach. The same applies to
paper[13], who, however, partially address criterion
(2). Paper[1] and the IEEE Computer society
address criterion (2) partially, too. In other papers, a
didactical approach (3) and a user-centered software
development focus (4) is presented as well. While
fulfils criterion (1) partially, paper[1] present a
clear differentiation between fast and long trainable
capabilities. Table 1 summarizes the analysis of
the skill classification approaches. Against the
background of the introduced criteria, paper[1]
represent the conceptual basis for structuring the
practically demanded software engineering skills as
well as enriches the didactical basis of the learning
tasks.

7DEOH��� &RPSDULVRQ�RI�VNLOO�FODVVL¿FDWLRQ�DSSURDFKHV�

D
iff

er
en

tia
tio

n
fa

st

YV
��O
RQ
J�
WU
DL
QD
EO
H�

ca
pa

bi
lit

ie
s

D
iff

er
en

tia
tio

n
of

pr

og
ra

m
m

in
g

la
ng

ua
ge

sk

ill
s

D
id

ac
tic

al
 a

pp
ro

ac
h

ex
pl

ic
at

ed

U
se

r-
ce

nt
er

ed
 so

ft
w

ar
e

de
ve

lo
pm

en
t f

oc
us

1BQFS<�>��*EFOUJGZJOH�&TTFOUJBM�$PNQFUFODJFT�PG�4PGUXBSF�&OHJOFFST� /P /P /P :FT

1BQFS<��>��4PGUXBSF�&OHJOFFSJOH�GPS� UIF���TU�$FOUVSZ��"�CBTJT�GPS�SFUIJOLJOH�UIF�
DVSSJDVMVN�

:FT /P :FT :FT

1BQFS<�>��4PGU�4LJMMT�BOE�4PGUXBSF�%FWFMPQNFOU��"�3FGMFDUJPO�GSPN�UIF�4PGUXBSF�
*OEVTUSZ�

/P /P /P /P

*&&&�$PNQVUFS�TPDJFUZ��4PGUXBSF�&OHJOFFSJOH�$PNQFUFODZ�.PEFM�)BMG)BMG :FT :FT

1BQFS<�>��48���5IF�4PGUXBSF�&OHJOFFSJOH�#PEZ�PG�4LJMMT /P /P /P :FT

1BQFS<��>��8IBU�.BLFT�"�(SFBU�4PGUXBSF�&OHJOFFS� /P :FT /P :FT

1BQFS<�>��)BMG�B�$FOUVSZ�PG�4PGUXBSF�&OHJOFFSJOH�&EVDBUJPO��
5IF�$.6�&YFNQMBS�

:FT)BMG :FT :FT

1BQFS<��>��4PGUXBSF�&OHJOFFSJOH�&EVDBUJPO�#FZPOE�UIF�5FDIOJDBM��"�4ZTUFNBUJD�
-JUFSBUVSF�3FWJFX

/P /P :FT /P

1BQFS<��>��48�,�7�����(VJEF�UP�UIF�4PGUXBSF�&OHJOFFSJOH�#PEZ�PG�,OPXMFEHF /P)BMG /P :FT

ኄ 12 ర 5

ኄӡОࡓ˗ൗᣄ͈ࢺሮஔᐲڎᬅᆑᝧ͘
ἷ$IJOB�&VSPQF�*OUFSOBUJPOBM�4ZNQPTJVN�PO�4PGUXBSF�&OHJOFFSJOH�&EVDBUJPOἸ

3 Fast Trainable Capabilities for Software
Engineering

Considering the gathered data from the job
advertisements for software engineers on the job
portals as a whole, programming skills are by far
the most required skills. Therein, knowledge and
the ability to code in object-oriented languages
as well as applicable knowledge in data bases are
especially in focus. These facets are followed by job
experience and soft skills such as communication
and self-organization skills. With a large distance,
an official degree is required. Furthermore, extra
requirements and bonuses such as language skills
(e.g., good command of written and spoken English,
or Cantonese with the ability to speak Mandarin),
or competences related to working with physical
components (e.g., troubleshooting of hardware
problems) are in demand (Fig. 1).

and troubleshooting and the ability to work with
databases. Working with cloud technologies is
the least required programming skill. Considering
soft skills in more depth, the distribution is rather
homogeneous: Communication skills (21%),
teamwork (20%), analytical thinking and problem
solving (20%), or self-organization (18%) are the
most demanded skills. This category is completed by
motivation for life-long learning (11%), the ability to
ZRUN�LQ�DJLOH�HQYLURQPHQWV�������DQG�VHOI�HI¿FDF\�
(5%) (Fig. 2).

)LJ���� *HQHUDO�UHTXLUHPHQWV�RQ�VRIWZDUH�HQJLQHHUV�

In summary programming skills and soft skills
are more valued than official degrees by the
market. Hardware related skills and experience
are, nonetheless, necessary too. Which specific
skills are needed, however, strongly depends on the
UHVSHFWLYH�MRE�SUR¿OH��7KH�LGHQWL¿HG�VRIWZDUH�UHODWHG�
FRPSHWHQFHV�RIWHQ�KDYH�D�ORZHU�VSHFL¿F�FRYHUDJH�LQ�
WKH�SUR¿OHV�

An in depth consideration of programming skills
unveils that knowledge in specific programming
languages (32%) such as Python or Ruby and
knowledge in central concepts (23%) like data
structure, software design patterns or object-oriented
programming are the most required hard skills in this
category, followed by the capability of working with
VSHFL¿F�IUDPHZRUNV�DQG�WRROV�DV�ZHOO�DV�GHEXJJLQJ�

)LJ���� 'LVWULEXWLRQ�RI�SURJUDPPLQJ�DQG�VRIW�VNLOOV�

23 %

6 %

13 %
13 %

14 %

32 %

Knowledge in specific programming languages
Working with framework and tools
Debugging and troubleshooting
Working with databases
Working with clouds
Knowledge in central concepts

11 %
5 %

20 %

20 %
18 %

5 %

21 %

Communication Skills
Work in agile environments
Self-organisation
Teamwork
Analytical thinking and problem solving
Self-efficacy
Motivation for life long learning

Programming skills

Soft skills

For the sake of focusing on conveyable FTCs,
we will concentrate in the following on technical
requirements and neglect the other skill facets.

20206
ᝠ ካ ஔ ᐲ
Computer Education

These capabilities can be distinguished into such,
which require profound theoretical knowledge
(PTK) typically acquired for a university degree
and such, which can be t ra ined or learned
otherwise, since no need for a deep understanding
of, e.g., software architecture principles, or
operating systems exists for usual task conduction.
From this catalogue of capabilities we isolate

these that can be acquired during several one-day-
trainings in theoretical and practical micro learning
units. In Table 2, programming skills are assigned
to these two categories, complemented with a brief
description. Learning factories as practical learning
environments are ideal places for developing FTC
in practical learning tasks, which we will show in
the following.

7DEOH��� 3URJUDPPLQJ�VNLOOV�

Capabilities Brief description FTC PTK
,OPXMFEHF�JO�TQFDJGJD�QSPHSBNNJOH�
MBOHVBHFT

4LJMMT�JO�PCKFDU�PSJFOUFE�QSPHSBNNJOH�MBOHVBHFT�	F�H��+BWB�1ZUIPO�$���$�3VCZ�FUD�
 9

8PSLJOH�XJUI�GSBNFXPSL�BOE�UPPMT
"CJMJUZ� UP�XPSL�XJUI�DVSSFOU� GSBNFXPSLT� 	4QSJOH�%SPQXJ[BSE�4QSJOH�CPPU
�BOE� UPPMT�
	FTQFDJBMMZ�(*5

9

%FCVHHJOH�BOE�USPVCMF�
TIPPUJOH

"CJMJUZ�UP�BOBMZ[F�BOE�EFCVH�GPS�UIF�TBLF�PG�USPVCMFTIPPUJOH�BOE�QSPCMFN�TPMWJOH�PG�PXO�
QSPHSBNNFE�BOE�UIJSE�QBSUZ�TPGUXBSF

9

8PSLJOH�XJUI�EBUBCBTFT 3FGFST�UP�TLJMMT�JO�42-�+40/�.Z42-�3&45�"1*�PS�/P42- 9

8PSLJOH�XJUI�DMPVET
,OPXMFEHF�PG�DMPVE�QMBUGPSNT� 	F�H��"84�$BTTBOESB�,BGLB�/VUBOJY
� UIFJS� JOUFSOBM�
JOGSB�
TUSVDUVSF�BOE�PG�CSJEHJOH�CFUXFFO�UIFN

9

,OPXMFEHF�JO�DFOUSBM�DPODFQUT
6OEFSTUBOE�PG�DPSF�DPNQVUFS�TDJFODF�DPODFQUT�F�H��BMHPSJUINT�EBUB�TUSVDUVSF�TPGUXBSF�
EFTJHO�QBUUFSOT�001�BOE�LOPXMFEHF�PG�TPGUXBSF�FOHJOFFSJOH�QSPDFTTFT�	F�H��BHJMF�TDSVN�
DPOUJOVPVT�JOUFHSBUJPO�FUD�

9

$PNQVUFS�TDJFODF�GVOEBNFOUBMT
,OPXMFEHF� JO� DPNQVUFS� TDJFODF� GVOEBNFOUBMT� 	QSPKFDU�QMBOOJOH� TPGUXBSF�EFTJHO�
EFWFMPQNFOU�QSPDFTT�FUD�

9

4 Learning Factory in the Research and
$SSOLFDWLRQ�&HQWHU�,QGXVWU\����

Learning factories are learning environments in
which participants are trained by the usage of
simulated real production processes, which are as
realistic and authentic as possible[14]. They offer a
basis for self-controlled and informal learning and
pursue an action-oriented approach for competence
development by means of structured self-learning
processes that are supported by different teaching
methods, which move the teaching and learning
processes close to real situations[15]. Digitized
learning factories cover topics of digitization,
make use of new digital possibilities within their
didactic approach, and use þdigital tools for the
purpose of learning production related concepts and
subjectsÿ[16]. That is, relevant aspects of production
are hardware-and/or software-based replicated and

can be created, tested, and simulated for conveying
VNLOOV��H�J��LQ�WKH�¿HOGV�RI�VRIWZDUH�HQJLQHHULQJ[17].

The learning factory in the Research and
Application Center Industry 4.0 (RACI 4.0)
comprises a hybrid learning environment, which
combines the benefits of virtual and hardware
simulation in order to design or analyze industrial
manufacturing processes or value-adding networks
as well teach, learn and understand the advantages
of using new technologies in industrial processes.
The main physical components are work pieces and
machine tool demonstrators as well as transport lines
which connect various machine tool demonstrators.
Additionally, Internet of Thing (IoT) devices such
as AR/VR glasses, tablets, smartwatches, robots,
smart products and machines are integral elements.
Especially the IoT technologies as well as the
therefore required skills for programming and
engineering are in theoretical and practical focus

ኄ 12 ర 7

ኄӡОࡓ˗ൗᣄ͈ࢺሮஔᐲڎᬅᆑᝧ͘
ἷ$IJOB�&VSPQF�*OUFSOBUJPOBM�4ZNQPTJVN�PO�4PGUXBSF�&OHJOFFSJOH�&EVDBUJPOἸ

within learning factory sessions. ��3URJUDPPLQJ�RI�$XJPHQWHG�5HDOLW\�JODVVHV��
New user actions have to be integrated into the user
interface of a pair of AR glasses.
�� 3URJUDPPLQJ� RI� D� 5DVSEHUU\� 3L��:KHQ� D�

light beam is interrupted some actions have to be
performed.

Both scenarios primarily address and make use of
knowledge in programming languages and working
with framework/tools.
���� 6FHQDULR����([WHQVLRQ�RI�D�XVHU�LQWHUIDFH�
of AR glasses
This scenario is based on paper[19]. The requirement
is to add a menu entry which allows for a decision
between two alternatives when a certain product is
being watched through the AR glasses. The result
of the users action shall be shown in the AR glasses
(Fig. 3).

)LJ���� ([DPSOH�VFHQDULR����H[WHQVLRQ�RI�D�XVHU�LQWHUIDFH�
RI�$5�JODVVHV�

The scalable design of learning modules and
learning tasks allows for addressing different skill
levels. On the one hand, it is possible to teach the
principles of software architecture. On the other
hand, programming skills are also trainable by
little demanding learning tasks. For the purpose of
developing IoT and software engineering skills, a
subject-oriented and scenario-based didactic concept
has been developed and implemented[18]. The
scenarios are either from a repository or a simulation
RI�UHDO� WDVNV�ZKLFK�HPSOR\HHV�KDYH�WR�IXO¿O��LQ�WKH�
future). These scenarios can be merged into a whole
teaching and learning environment by connecting
different tasks. The learning modules of the didactic
concept are content-specific and consist of several
learning elements. From a competence facet
perspective, a module focusing software engineering
skills in the RACI 4.0 learning factory is the module
basics in software engineering. In alignment with[1]
the foci lie on computer science fundamentals like
software architecture, software design principles
and engineering quality assurance as well on the
conveyance of basic coding skills in practical
learning units.

5 Practical Teaching and Learning Tasks

Focusing on conveying and applying programming-
related skills, we introduce 2 small tasks:

)LJ���� 3DUWLDO�VRXUFH�FRGH�YLVXDOL]DWLRQ�

The expected course of action of the participants
is as follows: With a graphical tool the two buttons
“yes” and “no” are to be drawn. Alternatively,
some existing button shapes could be dragged
into the programming pane and renamed. The
reference object and the target image are to be
captured and positioned spatially. The buttons have
to be positioned in the three-dimensional space, in
spatial relation to a reference object, in this case a
target image. As a next step, the question has to be
answered when the action buttons are to be presented
to the user of the AR glasses. This should take place
when the AR glasses recognize the target image.

Now the programmer has to describe the behavior
of the spatial objects. For instance the pseudo-
code for this simple situation is (target image is

20208
ᝠ ካ ஔ ᐲ
Computer Education

recognised [show buttons]) and IF (target image is
NOT recognised [hide buttons]). Another example
is to formulate environment conditions like “button
is pressed” (button. pressed). The visual element
“product ok” or “product not ok” will only be visible
ZKHQ�VRPH�FRQGLWLRQV�DUH�IXO¿OOHG�DV�VKRZQ�LQ�)LJ��
4. The programming of AR interaction is very similar
to traditional programming with the addition of a
spatial behavior perspective which has to be taken
into account. The advantage of AR is that visible and
touchable objects are programmed which helps to

understand the basic concepts of environment status,
conditions and user triggered decisions.
���� 6FHQDULR����3URJUDPPLQJ�D�5DVSEHUU\�3L
The task in this second scenario is to implement a
visitor counter for determining the number of people
who are in a room using two distance sensors (Fig. 5).
The room has only one entry and only one exit and
the respective directions for entering and leaving
the room are determined. The room is empty at the
beginning and each person that is entering or leaving
the room passes a sensor respectively.

At the beginning of this scenario the participants
will be provided with a kit of electronic components
�UDVSEHUU\�3L��VHQVRUV�HWF��DQG�D�SUH�GH¿QHG�SURJUDP�
to read a sensor unit.

First, the participants get a short introduction into
3\WKRQ�����PLQ���,Q�VXEVHTXHQW�WDVNV�WKH�SUH�GH¿QHG�
VFULSW�KDV�WR�EH�H[WHQGHG�WR�IXO¿OO�WKH�UHTXLUHPHQW�RI�
counting visitors. To achieve the given requirements
the participants draft a conceptual model of the
necessary steps and realize them, using Python with

)LJ���� &RQFHSWXDO�PRGHO�³6HWWLQJ�RI�WKH�YLVLWRU�FRXQWHU´�

)LJ���� 5HDOL]HG�VFULSW�LQ�VFHQDULR���

ኄ 12 ర 9

ኄӡОࡓ˗ൗᣄ͈ࢺሮஔᐲڎᬅᆑᝧ͘
ἷ$IJOB�&VSPQF�*OUFSOBUJPOBM�4ZNQPTJVN�PO�4PGUXBSF�&OHJOFFSJOH�&EVDBUJPOἸ

the assistance of a learning companion. Afterwards
the different realized results will be discussed. This
allows for reflection of the content and leads to
better internalization of the newly acquired skills.
The realized script is shown in Fig. 6.

�� &RQFOXVLRQV

In this contribution fast trainable capabilities in
software engineering are deduced from theory
and practice. These contents are systematized
in processable chunks of quickly learnable
programming skills. On that basis and applying
an action and subject-oriented approach, teaching
and learning tasks structured into two scenarios
are used to illustrate the capability conveyance
in a learning factory. Current activities focus the
FRQWLQXRXV�HYDOXDWLRQ��UHÀHFWLRQ��DQG�LPSURYHPHQW�
of the teaching and learning formats. Further tasks
will be the development of additional scenarios as
well as extending the theoretical content for the
participants. Future work will address strengthening
the theoretical foundation, that is extending both
content and teaching methods as well as developing
further learning tasks and within this modules and
scenarios.

Acknowledgement

This work was supported in part by the Junior
Research Group þProMUT” (01UU1705B) which is
funded by the German Federal Ministry of Education
and Research as part of its funding initiative þSocial-
Ecological Research” and the German Internet
Institute (16DII116).

References
[1] Mead N R, Garlan D, Shaw M. Half a century of software

engineering education: The CMU exemplar [J]. IEEE
Software, 2018, 35(5): 25-31.

[2] Aasheim C L, Li L, Williams S. Knowledge and skill
requirements for entry-level information technology
workers: A comparison of industry and academia [J]. Journal
of Information Systems Education, 2019, 20(3): 10.

[3] Tuzun E, Erdogmus H, Ozbilgin I G. Are computer science
and engineering graduates ready for the software industry?
Experiences from an industrial student training program[C]//
Proceedings of the 40th International Conference on
Software Engineering: Software Engineering Education and
Training (ICSE-SEET ’ 18). New York: ACM, 2018: 68-77.

[4] Heggen S, Cody M. Hiring millennial students as software
engineers: a study in developing self-confidence and
marketable skills[C]//Proceedings of the International
Workshop on Software Engineering Education for
Millennials (SEEM). Gothenburg: IEEE/ACM, 2018: 32-39.

[5] Beier G, Ullrich A, Niehoff S, et al. Industry 4.0: How it is
defined from a sociotechnical perspective and how much
sustainability it includes–a literature review[J]. Journal of
Cleaner Production, 2020, 259: 1-13.

[6] Teichmann M, Ullrich A, Gronau N. Subject-oriented
learning – a new perspective for vocational training in
learning factories [J]. Procedia Manufacturing, 2019, 31: 72-
78.

[7] Sedelmaier Y, Landes D. Swebos–the software engineering
body of skills [J]. International Journal of Engineering
Pedagogy, 2015, 5(1): 20-26.

[8] Ahmed F, Capretz L F, Bouktif S, et al. Soft skills and
software development: A reflection from the software
industry[J]. International Journal of Information Processing
and Management, 2013, 4(3): 171 - 191.

[9] Turley R T, Bieman J M. Identifying essential competencies
of software engineers[C]// Proceedings of the 22nd Annual
ACM Computer Science Conference on Scaling up : Meeting
the Challenge of Complexity in Real-world Computing
Applications. New York: ACM, 1994: 271-278.

[10] Shaw M. Software Engineering for the 21st Century: A
basis for rethinking the curriculum[R]. Carnegie Mellon
University: Technical Report CMU-ISRI-05-108, 2005.

[11] Li P L, Ko A J, Zhu J. What makes a great software
engineer?[C]// Proceedings of the 37th International
Conference on Software Engineering. Piscataway: IEEE ,
2015: 700-710.

[12] Groeneveld W, Vennekens J, Aerts K. Software engineering
education beyond the technical: A systematic literature
review[C]// Proceedings of the 47th SEFI Conference.
Brussels : SEFI – European Society for Engineering
Education, 2019: 1607-1622.

[13] Bourque P, Fairley R E. SWEBOK V3.0. Guide to
the Software Engineering Body of Knowledge [M].
Washington D.C.: IEEE Computer Society Press, 2014.

[14] Abele E, Eichhorn N. Process learning factory – Training
students and management for excellent production
processes[C]// Proceedings of the Kuljanic, E. (Ed.)
Advanced Manufacturing Systems and Technology. Udine:
CISM, 2008: 63-73.

[15] Abele E, Metternich J, Tisch M, et al. Learning factories
for research, education, and training[J]. Procedia CIRP,
2015, 32: 1-6.

[16] Haghighi A, Zadeh NS, Sivard G, et al. Digital learning
factories: Conceptualization, Review and Discussion[C]//
Proceedings of the 6th Swedish Production Symposium

202010
ᝠ ካ ஔ ᐲ
Computer Education

(SPS14). Gothenburg: SPS, 2014: 1-9.
[17] Ullrich A, Enke J, Teichmann M, et al. Audit-and then

what? A roadmap for digitization of learning factories [J].
Procedia Manufacturing, 2019, 31: 162-168.

[18] Gronau N, Ullrich A, Teichmann M. Development of the
industrial IoT competences in the areas of organization,
process, and interaction based on the learning factory
concept[J]. Procedia Manufacturing, 2017, 9: 254-2017.

[19] Grum M, Gronau N. Integration of augmented reality
technologies in process modeling-the augmentation of real
world scenarios with the KMDL[C]//Proceedings of the
7th International Symposium on Business Modeling and
Software Design, BMSD. Barcelona: SciTePress, 2017:
206-215.

André Ullrich studied business
administration at the University of
Potsdam and the Finance Academy
Moscow. He received his diploma
degree in 2011 and his Ph.D. degree
in Business Informatics from the
University of Potsdam, Germany, in
2018. The emphasis of his work lies

in sustainability of enterprise architectures, innovation
processes, knowledge dynamics in digital environments
and learning factories.

(Publishing Editor: Yuan Zhao)

Malte Teichmann fulfilled his
master of arts in educational science
at University of Potsdam with a
focus on vocational training and
development of organizat ions.
He develops learning modules
and tasks for vocational training
and examines the potentials of

Tablets, Smartphones, and AR-Glasses for adult learning.
Furthermore, he develops teaching/learning-scenarios in
the Research and Application Center Industry 4.0.

1RUEHUW�*URQDX studied engineering
and business administration at
Berlin University of Technology.
He received his Ph.D. in Computer
Science 1994 at Berlin University
of Technology and finished his
habilitation thesis there. Currently,
he holds the Chair of Business

Informatics, esp. Processes and Systems at the University of
Potsdam, Germany. His main research activities concentrate
on the areas of knowledge management and business
process management. He is regular member of the German
Academy of Technical Sciences, author of more than 90
papers and author resp. editor of several books.

