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Abstract 

Email tracking allows email senders to collect fine-grained behavior and location data on 

email recipients, who are uniquely identifiable via their email address. Such tracking 

invades user privacy in that email tracking techniques gather data without user consent or 

awareness. Striving to increase privacy in email communication, this paper develops a 

detection engine to be the core of a selective tracking blocking mechanism in the form of 

three contributions. First, a large collection of email newsletters is analyzed to show the 

wide usage of tracking over different countries, industries and time. Second, we propose a 

set of features geared towards the identification of tracking images under real-world 

conditions. Novel features are devised to be computationally feasible and efficient, 

generalizable and resilient towards changes in tracking infrastructure. Third, we test the 

predictive power of these features in a benchmarking experiment using a selection of state-

of-the-art classifiers to clarify the effectiveness of model-based tracking identification. We 

evaluate the expected accuracy of the approach on out-of-sample data, over increasing 

periods of time, and when faced with unknown senders.  
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1. Introduction 
Data on email reading behavior is routinely used to infer commercially valuable information from 

customers. For example, it allows marketers to derive user profiles and measure the reach and effectiveness 

of email marketing campaigns (Hasouneh & Alqeed, 2010). It also facilitates marketing activities, such as 

calling prospective customers at the time they open a marketing message (Hlatky, 2013). The Direct 

Marketing Association estimates that its members achieved an average return of £38 for every pound spent 

on email marketing and that this ROI will continue to increase in the future with the spread of advanced 

testing and personalization (The Direct Marketing Association, 2015). This gives marketers a strong 

incentive to monitor how customers interact with email newsletters and advertising. Using the same 

methods, spammers and phishers rely on email tracking to validate and collect active email addresses for 

their illegal activities (Sophos, 2014). Current email tracking techniques enable the sender to track if and 

how often an email is opened, the time at which the email is read, which device as well as operating system 

the recipient uses, and her Internet Protocol (IP) address (Murphy, 2014). Such information, in turn, 

facilitates deducting the location of the reader, her affiliation to a company or organization, email reading 

behavior, travel patterns based on desktop and mobile use, and if an email was forwarded or printed 

(Technology Analysis Branch, 2013). A peculiarity of email tracking is that tracking information is linked 

to a user’s email address, which is an almost unique identifier of the user that can easily be matched to other 

accounts of the user such as social media profiles. Consequently, tracking users across devices, applications, 

locations, etc. is much easier in email tracking compared to other channels such as web tracking. 

Importantly this data is typically gathered without active consent, case-by-case confirmation or even 

awareness of the recipient. In combination, these characteristics facilitate surveillance and constitute an 

invasion of user privacy. As we are able to show, email tracking does not merely constitute a theoretical 

risk but is ubiquitous in marketing communication.  

Therefore, email users require tools to protect against potential privacy hazards caused by email tracking. 

A review of the literature and contemporary email clients reveals a lack of easy-to-use, effective, and 

reliable protection methods. The reason is that the identification of tracking images, which are the main 

tracking mechanisms in emails, poses specific challenges that render standard ad blockers and blacklists 

ineffective. The goal of this paper is to contribute towards empowering email users to protect their privacy. 

To that end, we develop a machine learning approach to detect tracking elements in emails with the ultimate 

goal to filter them selectively.  

The contribution of this paper is three-fold. First, we establish the prevalence of email tracking through the 

analysis of 30,756 marketing-communication emails from 300 global companies collected over a period of 

20 months. We extend previous analyses by comparing the occurrence of email tracking in different 
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industries and identifying common email-tracking providers. Second, we develop a set of features geared 

towards the identification of tracking images under real-world conditions. These features are devised to be 

computationally efficient, to generalize to structures of unseen tracking images, and to be resilient against 

changes in tracking structures over time. Third, using a selection of state-of-the-art classifiers, we test the 

predictive power of these features in a benchmarking experiment to clarify the effectiveness of model-based 

tracking identification. We evaluate the expected accuracy of the approach on test sets that are out-of-

sample, out-of-time, i.e. after increasing amounts of time have passed, and out-of-universe, i.e. when faced 

with unknown senders. This allows us to identify an optimal identification model and appraise the degree 

to which a model-based approach protects against email tracking in application.  

The remainder of the paper is structured as follows. Section 2 introduces current email tracking techniques. 

Section 3 identifies related literature. Section 4 examines the occurrence of tracking within the commercial 

newsletters that we collect for the study to stress the relevancy of defensive strategies. Section 5 presents 

the featurization methodology to identify tracking images. Section 6 and Section 7 elaborate on the 

experimental design and empirical results, respectively. Section 8 concludes. 

2. E-Mail Tracking Technology 
We start by outlining email tracking methodology and the degree to which it impacts user privacy. This 

section provides the technical foundation to develop features for tracking identification and countermeasure 

design. The tracking process (Figure 1) is based on emails that are written in Hypertext Markup Language 

(HTML) referencing specific external resources. Prior literature refers to these resources with different 

terms, including “web bugs” (Martin, Wu, & Alsaid, 2003) and “tracking pixels” (Vaynblat, Makagon, & 

Tsemekhman, 2009). Considering their function and location within the email’s HTML code as <img> tags, 

we use the term tracking images. The tracking process starts with the sender dispatching an HTML-based 

email. The email includes an image tag, which references a tracking object stored on a server of the sender, 

or its tracking provider, in the form of a Uniform Resource Locator (URL). When the recipient opens her 

mail client, the mail user agent (MUA) synchronizes the local mail repository with updates provided by the 

recipient’s message transfer agent (MTA), and the user receives the email. When the recipient opens the 

email, which contains the tracking image tag, the mail client requests the referenced file. The web server, 

where the file is stored, logs this request and provides the image to the client. Log analysis allows the sender 

to infer information on the recipient’s access device and email reading behavior. For example, if the email 

is opened on different devices, every individual access is logged with the corresponding user-agent 

information, which allows for cross-device tracking. 
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Figure 1: Overview of the email tracking system and process 

Image requests themselves do not contain sufficient information to identify a specific email recipient. For 

the purpose of matching an image request to a known recipient and thus track individual behavior, either 

the tracking object must be unique to the recipient or the reference URL must contain a unique tag that 

identifies the recipient. In both cases, the reference within the <img> tag will be unique to the email 

recipient. By sending images with a specific reference to only one recipient, trackers control that subsequent 

access to the image via that reference can be attributed to a single recipient. The hash of the recipient’s 

email address has been identified as a common approach to create anonymized identifiers (Englehardt, Han, 

& Narayanan, 2018).  

In contrast, requests to non-tracking images from references that are common to all recipients, e.g. product 

pictures, are logged on the server in combination with the respective IP address and device information but 

cannot be linked to recipients’ email addresses. An extension to this form of aggregate data collection are 

images containing, for example, an identifier for the email campaign rather than individual recipients. Use 

cases of tracking on the aggregated level (i.e., without an identifier for individual users) include measuring 

the opening rate of an email campaign for A/B testing of newsletter design. Since no individual information 

is collected by non-unique tracking images, their privacy implications are less pronounced. We 

consequently focus on images that include a unique identifier and facilitate tracking of individual users in 

this study. For readability, we refer to individual tracking images as tracking images. 

Individual tracking data poses a privacy risk because personal information about the identity and behavior 

of the tracked user can be derived without her consent or awareness. The log entries facilitate inducing that 

the user has read or at least opened an email, because current email clients do not download images before 

the corresponding email is opened. In case of spam emails sent to random email addresses, this is sufficient 
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to prove that an active account has been found. In addition, the time stamp and the existence of multiple 

log entries reveal the time of day and the number of times an email is opened. The combination of multiple 

entries for a single mail, as well as multiple entries from one user for different mails, provide insights into 

the recipient’s email reading behavior. Furthermore, the log entry facilitates inferring information about the 

user environment (Agosti & Di Nunzio, 2007). Data on the use of mobile or desktop devices, especially 

when aggregated over time, conveys additional information about user activities such as office or travel 

times. It is also possible to track whether an email has been printed through a print stylesheet, either by 

tracking the stylesheet directly or by matching stylesheet access to the device information collected by the 

tracking image.  

More complex analysis reveals additional information about the recipient. For example, transmitted IP 

addresses enable trackers to gather location-related information (Poese, Uhlig, Kaafar, Donnet, & Gueye, 

2011). Based on a reverse lookup of an IP address, a log entry may also reveal a user’s affiliation to an 

organization, for example, if private emails are opened at work. Combining pieces of information also 

facilitates predicting whether an email has been forwarded and allows deducting travel routines. For 

example, a major technology company combined the IP address, location information and the time stamp 

of a log entry to identify a board member who was forwarding confidential information (Evers, 2006).  

A crucial point differentiating web and email tracking is that the collected and combined information is not 

anonymous in email tracking. While both rely on similar mechanisms (e.g., cookies or tracking images) 

and gathers a rich set of behavioral information, users tracked via web tracking are not directly personally 

identifiable without consent. The personal identification of the tracked user is often impossible and 

alternative methods to recognize users over time and web sites have been proposed (Nikiforakis et al., 2013) 

(Yang, 2010). Information collected via email tracking, on the other hand, is necessarily linked to an email 

address, which provides a platform independent almost unique identifier of a person and often contains the 

user’s name and possibly organization. Additionally, it is often possible to link an email address to personal 

online profiles, for example on social media sites.  

Currently, the only solution for providing fully reliable privacy protection against email tracking in HTML 

emails is to block all external content referenced in emails. From a technical point of view, this approach 

is easy to implement on either the server or the client and can be activated as default for most email clients. 

However, blocking all images in an email entails a substantial loss of information and interferes with user 

experience by excluding all referenced images and the corresponding content. Possible further issues 

include incorrect formatting, loss of styling elements, and misinterpretation if external images convey 

crucial information. 
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A selective filtering approach provides a balance between preventing user tracking and sustaining user 

experience. It operates through identifying and selectively blocking tracking elements within an email. In 

this approach, a predictive model is used to categorize referenced images into tracking and non-tracking 

images. Non-tracking images remain untouched, whereas tracking image references are removed from the 

email. Note that tracking images are often transparent and do not contain content (Bender, Fabian, 

Lessmann, & Haupt, 2016). In the ideal case, the user avoids being tracking without noticing that an email 

has been sanitized. However, the efficacy of selective filtering depends critically on the algorithm for 

tracking image identification.  

3. Related Work 
We organize the literature related to this study into three categories. First, we summarize the existing 

research on email tracking. Given the sparsity of research on this specific topic, we next identify studies on 

web tracking, which is similar from a technological perspective. Last, we discuss previous studies 

investigating mechanisms to selectively remove unwanted elements from HTML-based content.  

Email tracking is periodically covered in the general press, where it is criticized for invading privacy 

(Murphy, 2014) or mentioned as a tool to uncover information leakage (Hodgekiss, 2010). Some authors 

hint at the possibility of tracking in HTML emails (Bouguettaya & Eltoweissy, 2003; Harding, Reed, & 

Gray, 2001; Martin et al., 2003; Moscato, Altschuller, & Moscato, 2013; Moscato & Moscato, 2009). Few 

academic papers have examined the topic. A notable exception is the recent study by Englehardt et al. 

(2018) showing the ubiquity of email tracking in a large scale sample. Most studies focus on marketing 

rather than privacy or countermeasures against email tracking, for example Bonfrer and Drèze (2009) and 

Hasouneh and Alqeed (2010), who structure technical and process-related aspects of email tracking from a 

marketing perspective and stress the importance and prevalence of tracking in newsletters and other 

marketing communication. This study extends our own previous research on the characteristics of email 

tracking images as well as mechanisms for tracking detection and prevention (Bender et al., 2016) in three 

ways. First, we broaden the scope of the analysis of tracking prevalence through examining emails gathered 

over a horizon of 20 months and from 33 industries. Second, we substantially improve the tracking detection 

engine. Whereas Bender et al. (2016) use an untuned feed-forward neural network classifier, we conduct a 

comprehensive benchmark of state-of-the-art machine learning algorithms for tracking image classification. 

Third, we propose novel predictors of email tracking to ensure deployability. Most importantly, we establish 

the stability of detection accuracy and generality of the tracking protection framework through rigorous 

out-of-time and out-of-universe testing. This allows us to demonstrate that the proposed system is adequate 

to protect users against privacy invasions under real-world conditions.  
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From a technological point of view, email tracking can be considered an adaptation of web tracking 

mechanisms to HTML-based emails. Unlike email tracking, the use of web tracking in different situations 

(Javed, 2013; Jensen, Sarkar, Jensen, & Potts, 2007) and its detection (Alsaid & Martin, 2002; Fonseca, 

Pinto, & Meira, 2005) have received much attention in the literature. Prevention of such mechanisms and 

the evaluation of existing software solutions have also been studied (Fonseca et al., 2005; Leon et al., 2012). 

Other research emphasizes the technical aspects of web tracking, such as different categories of web bugs 

(Dobias, 2010) or the potential for aggregating multiple server log files (Evans & Furnell, 2003). We make 

use of the mature research towards the detection of web tracking and extend it to email tracking.  

Methodologically, the identification of tracking content is related to the identification of tracking and 

advertising on web pages (e.g., ad blocking) or other unwanted content in emails (e.g., spam and phishing 

detection). These applications make use of information related to the image reference URL, the email 

sender, the website host, the content visible to the user, and the formatting of an image. Ad blockers rely 

on the image content for classification (Li, Li, Li, & Wang, 2011). However, content classification requires 

accessing the image, which would be registered by the tracking server. Therefore, content-based approaches 

are inapplicable to prevent email tracking effectively.  

An alternative is to examine the structure of image references. Li et al. (2011) and Kushmerick (1999) 

propose a range of features to identify advertising images on web pages. They focus on the formatting and 

image-reference link relative to other images on the same page; for example, investigating whether the 

image domain is different from the site domain, with a deviation being indicative of third-party content. 

The reference structure itself is also used to identify advertisement. For example, Shih and Karger (2004) 

propose a heuristic that exploits the fact that advertisement images are often placed in a different folder 

than content images. URLs have also been used with success to identify phishing mails (Blum, Wardman, 

Solorio, & Warner, 2010; Garera, Provos, Chew, & Rubin, 2007; Ma, Saul, Savage, & Voelker, 2009b; 

Whittaker, Ryner, & Nazif, 2010)  and to classify web pages (Kan & Thi, 2005; Shih & Karger, 2004).   

Most of the above approaches rely on identifying keywords through text mining on parts of the URL. These 

keywords include both words in natural language describing the target-link content, meaningful letter or 

number combinations called tokens, and recurring server or folder names. While these can be identified for 

tracking images, they require constant updating and are susceptible to avoidance strategies by spammers 

and trackers, respectively. Fette, Sadeh, and Tomasic (2007) introduce predictors counting the number of 

dots and the number of different top-level domains in mail links to capture the complexity of the URL and 

the increasing number of domains involved in phishing. We extend these ideas when creating features to 

capture the structure of tracking image references. 
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Especially for phishing analysis, some approaches rely on the content of the email. Bergholz, Chang, Paass, 

Reichartz, and Strobel (2008) propose features based on a dynamic Markov chain and topic models based 

on Latent Dirichlet Allocation. We focus on tracking image identification but acknowledge that a pre-

classification of emails based on their subject line or content could convey some preliminary information 

on the probability of an email being tracked. Preliminary classification could increase speed and accuracy 

of tracking identification in future work. 

Host information has been found effective in phishing and spam detection (Fette et al., 2007; Ma, Saul, 

Savage, & Voelker, 2009a; Ma et al., 2009b). This information is gathered via the IP address and a WHOIS 

request to the domain of the server that hosts a referenced website, because a phishing site “may be hosted 

in less reputable hosting centers, on machines that are not conventional web hosts, or through disreputable 

registrars” (Ma et al., 2009b). This reasoning does not hold for email tracking in e-commerce, where 

businesses operate within legal bounds and tracking images are hosted on official company or contractor 

servers. Moreover, looking up external information slows down the identification process in potential real-

time applications (Blum et al., 2010).  

In summary, prior work in the context of web tracking mentions the existence of email tracking, hints at 

tracking methods, and criticizes privacy implications. However, we find a lack of research investigating the 

prevalence of (legal) tracking activities and approaches to email prevent tracking. While there exist 

initiatives to develop anti-tracking software in the form of modified mail clients and add-ons that support 

selective tracking prevention (Barret, 2015), these tools are unable to provide reliable protection against 

most tracking approaches (Bender et al., 2016). Therefore, we extend prior work through studying a more 

comprehensive set of data and providing the foundation of a detection system to identify and selectively 

block tracking images. Specifically, we build on existing predictors of tracking use and extend these so as 

to ensure feasibility and improve resilience in real-world applications. Our empirical analysis then 

establishes the best learning algorithm for the task of tracking image detection and estimates its performance 

on emails from senders not seen in the data, and also after periods of time between training and application.  

4. Data and E-Mail Tracking Usage 
Analyzing the occurrence of tracking and training a supervised learner for automated detection require data 

on email communication including the status (tracking/non-tracking) of every image across all emails in 

the data. The collection of this ground truth data is complex due to important differences in data collection 

between ad blocking or spam detection and the identification of tracking images. In particular, comparable 

studies obtain status labels through human judgment, which is often crowd-sourced. The information 

available for classification in our setting consists of the images themselves and the email source code. 

Identification of tracking images based on the image content is unreliable, since content and tracking 
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functionality are independent of one another. In practice, transparent or tiny images without actual content 

are also legitimately used for formatting purposes (Martin et al., 2003). Thus, ground truth classification 

must be based on the image tag in the email code and, most importantly, the image reference. Image 

references do not have to be human-understandable, and tracking images are hidden from the recipient by 

design, which makes identification through human judges unreliable; as illustrated in Table 1.  

Table 1: Example image tags of two tracking and non-tracking images, respectively.  Tracking image tags are 
shown in rows 2 and 3. 

(1) <img border="0" alt="" src="https://i.emlfiles.com/cmpimg/6/9/7/files/imagecache/256906/w37_33215_t.jpg> 

(2) <img src="http://[company].msgfocus.com/t/1nqheZESyay9K7.png" alt=""> 

(3) <img src="http://newsletter.[company].de/tr/p.gif?uid=af0e[…]&mid=3fsd[…]" width="1" height="1" alt=""> 

(4) <img src="https://img.srv2.de/bm/img/c4/a/c4af0[…].png" width="8" height="6" alt="" title="" border="0"> 
A constituent property of personal tracking image references is that they contain a unique identifier for the 

recipient (see Section 2). We therefore create two identities and corresponding email addresses using Gmail 

and match the emails and images received on both accounts to identify tracking elements. We do this by 

extracting images from the HTML content of each pair of emails sent to both accounts and comparing the 

image reference URLs at each position for differences. Images for which the reference URLs are an exact 

match are classified as non-tracking images and images with different URLs as tracking images. To avoid 

bias from senders changing their email policy in response to the reading behavior of the users they are 

tracking, we ensure that none of the external images are requested from the web server at any point.  

With each account, we signed up for the newsletters of 300 companies and collected emails in a 20-month 

period from 2015 to 2017. Although not representative of email communication in general, we argue that 

newsletter emails are a suitable vehicle for this analysis. First, it is likely that companies use email tracking 

to assess the effectiveness of their newsletters (Hasouneh & Alqeed, 2010). We aim to increase this 

likelihood by concentrating on large companies, which are on average faster to adopt novel technology 

(Premkumar & Roberts, 1999). We sign up to email newsletters from the top-100 companies ranked by 

revenue in Germany, Great Britain, and the United States. Second, the wide availability of different 

newsletters simplifies systematic data collection and facilitates the gathering of a large amount of data. At 

the same time, signing up to newsletters requires an active request restricting the amount of data and its 

variance and may introduce selection bias, as opposed to, for example, the passive collection of unsolicited 

emails in spam detection. To mitigate this effect and ensure substantial variance, our company selection is 

based on company size and includes companies from three countries. Third, newsletter can be ordered 

multiple times without difficulty. In contrast to for example personal communication, using commercial 

newsletters is an effective way to gather ground-truth data. 
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Each artificial identity received 30,756 emails, which we could match between accounts. Of these, 7,154 

(23%) are in plain-text format, while the remaining 23,602 are HTML-based and thus facilitate tracking. 

Of the HTML emails, 21,500 (91%) contain a total of 794,519 external image references, which constitute 

the data set on which we build and test the tracking detection model. The number of images per email varies 

considerably and shows positive skewness. We observe a mean (median) value of 37 (18) external images 

per email. 16,410 emails (69% of HTML emails) contain tracking elements, which illustrates that tracking 

is common in company newsletters. The ratio of emails received from each country roughly corresponds to 

the ratio of companies with 29% of emails sent by companies from Germany, 40% from the United 

Kingdom (UK), and 31% from the United States (US). The tracking quota and the fraction of HTML-based 

emails vary significantly between countries (see Figure 2). The ratio of HTML emails is close to 100% for 

Germany and the US. In the UK, only 44% of emails are in HTML format, and out of these, only 46% are 

tracking mails, resulting in an overall tracking quota of 20%. This is significantly lower than the tracking 

quotas in Germany (95%) or the US (69%). 

Country-level variation reflects the industry distribution of the top companies in each of the three countries. 

Each email is matched to a company according to its sender domain and assigned to an industry category 

based on the Financial Times Equities database (Financial Times, 2017). Figure 3 presents the per-industry 

tracking ratio for industries with more than 100 emails in the sample. We observe that customer-targeted 

newsletters are tracked with near certainty, while business-to-business newsletters and company news, 

predominant among industrial producers, are less likely to contain a tracking image. An exception to this 

rule are investor bulletins, which are sent at high frequency in plain text. Bulletins are responsible for the 

large fraction of plain-text emails (light grey color) observed for the banking and travel sector. 
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Figure 2: Ratio of tracked emails per country 
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Figure 3: Ratio of tracking by industry (total number of emails in brackets) showing industries  

The tracking literature assumes tracking images to be small, typically with an area of 1 square pixel (Martin 

et al., 2003). We analyze the observed image sizes for tracking and content images in Figure 4. 35% of the 

tracking images for which a size could be determined have an area of one square pixel. There exist images 

with a specified area of 0, which are most likely not shown by the email client thus making them effectively 

invisible. The majority of tracking images has an area above 100 square pixels (38%) or no specified size 

(13%).  Note that we consider several ways to specify the size of images (see Section 5.1). The results 

suggest that simple rules to filter images based on their area are likely to fail.  

 

Figure 4: Image area (height x width) for tracking and content images 

The file extensions extracted from each image reference (Figure 5) reveal that the file format is not indicated 

for two-thirds of tracking files. Approximately 20% of references including a file format indicate the file to 
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be a code script rather than an actual image file, with the majority of scripts written in PHP or ColdFusion 

Markup. The use of executable files instead of images sheds light on the underlying tracking infrastructure 

and suggests that the file access and the information associated with it can be dynamically processed or 

forwarded to internal or third-party databases. The findings suggest the file type – when available – is highly 

discriminatory for the identification of tracking images. 

 

Figure 5: Relative frequency of file formats for tracking and non-tracking images 

5. Tracking Image Detection 
A selective tracking prevention system that targets and filters tracking elements conceptually consists of 

three components. First, a data-input component extracts all image tags and their attributes from raw email 

code. Second, a tracking detection engine, which represents the core of the system, performs two tasks. It 

creates indicative features from the raw data (e.g., HTML image tag) and uses the features as input to a 

classification model. The model estimates the probability that an image is used for tracking. Third, the 

selective filtering component processes the estimated tracking probability to handle external images. Rather 

than blocking all images in an email, which is currently the most secure way to avoid email tracking, the 

system is able to selectively block the download of images with high tracking probability. This empowers 

users to see uncritical content without being tracked and to decide, after inspecting a sanitized version of 

an email, whether they want to permit the download of further, system-filtered images, despite the risk of 

being tracked. This way, the envisioned system also offers a viable approach to handle content images that 

perform tracking. More specifically, users are enabled to make a conscious decision how they trade-off the 

risk of being tracked by the sender of an email with possible readability issues caused by image filtering.    

The detection engine classifies unknown images into two categories, tracking and non-tracking/content on 

the basis of meta-data extracted from HTML code. Images used for individual tracking exhibit structural 

peculiarities, which facilitate such classification. In particular, they contain a unique user identifier assigned 

by the tracker, are distinctly formatted, and are often handled by a different department or company (Bender 
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et al., 2016). However, correct identification is challenging – even for human judges – for two reasons. 

First, tracking images do not necessarily fulfill all criteria simultaneously and show significant variation in 

the observed patterns. While certain structures are necessary or common, their actual format depends 

largely on choices made by the tracker. For example, the existence of an individual identifier is necessary, 

but the identifier itself may be constructed out of numbers, lowercase and uppercase letters or any 

combination thereof and its position in the reference can be as folder name, image name or URL parameter 

(see Table 1). Note that the <img> attribute itself is not transmitted within the request to the webserver and 

thus not suitable for user tracking. The identification of tracking images is further complicated by the 

possibility to track images of any format or size, including branding or content images. Second, non-

tracking images may display the above characteristics, including very small images used for formatting, or 

images handled through content-management systems, whose file names resemble user IDs. Under these 

restrictions, only complex rules can ensure satisfactory identification of unwanted images at a low rate of 

false identifications without interfering with the email content or formatting. We therefore employ machine-

learning techniques to develop a detection model. 

In the remainder of the section, we propose a set of features to serve as input to a supervised machine-

learning algorithm. Recall that we perform our analysis at the level of an individual image. The features are 

split into four categories (see Table 2). The first two categories, reference structure and HTML image 

attributes, subsume aspects that are directly associated with the formatting of the image within the email 

and its reference URL path. The category image server is associated with the servers that host the images. 

The fourth category covers the email header. Features found in prior work (Bender et al., 2016) are marked 

with an asterisk. While further extension of features is surely possible, we aim to show that a set of resilient 

features is sufficient to ensure a high level of privacy. We elaborate on the empirical performance of the 

features in Section 7.1.  

Table 2: Predictors for the detection of tracking images by category 

Reference structure Reference structure (cont.) Email header 
Count IDs in filename * Reference includes '?' Custom header fields 
Count IDs in path * Reference includes '@' Image name matches sender 
Count number strings * Reference includes 'id' Length 'unsubscribe' field * 
Count number-letter changes * Reference includes 'click' * Ref. parts match 'list-unsubscribe' * 
Count numbers * Reference includes 'open' * Ref. parts match 'received-spf' * 
Count punctuation * Reference includes 'track' *  
Count strings Reference includes 'view' * Image server 
Count uppercase *  Images sharing same domain 
Fileformat 'jp(e)g' * Image structure Matching image and sender domain * 
Fileformat 'php' * align *  
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Fileformat none * Area *  
Img. sharing same fileformat Area: 0 pixels2 *  
Filename length Area: 1 pixels2 *  
Image link similarity (Max.) Area: 100+ pixels2  *  
Image link similarity (Mean) Area: 11-100 pixels2 *  
Image link similarity (Min.) Area: None specified *  
Image reference (ref.) length * Border width *  
Rel. reference length Length of attribute 'class' *  
Length of domain Contains 'style: display' *  
Longest Number in reference Count other identical images * 
Difference to mean letter count 'b' Image width *  
Difference to mean letter count 'f' Length of tag 'Title' *  
Difference to mean letter count 'm' Ratio of smaller images  
Difference to mean letter count 'w' Rel. image position *  
Number of folders in path   
Rel. filename length   
Rel. number of folders in path     
Features in italics are excluded from model training to ensure generality and resilience 
* Features marked with asterisks have been introduced by Bender et al. (2016) 

In the following, we refer to the task of creating features for a detection model as featurization. Featurization 

is guided by the analysis of the differences in non-tracking and tracking images and domain knowledge 

regarding the tracking process. We extend the features from Bender et al. (2016) and select a subset of 

features for model building based on theoretical considerations of generality and resilience, where resilience 

describes features and models with stable performance in the event of potential defensive strategies by 

trackers and changes in tracking infrastructure. It is reasonable to anticipate that companies and tracking 

providers will adjust their tracking infrastructure to evade anti-tracking efforts; similar to the efforts of 

spam senders to outsmart spam filters. We expect generality to require features capturing common and 

inclusive patterns and resilience to require features that cannot be effectively modified by trackers. Two 

general strategies are applicable to achieve this goal. Based on our understanding of the tracking process, 

we first exploit the user identifier as an observable and necessary trace of the tracking method and develop 

features that comprehensively describe its common form as a hash or random letter-number string. The goal 

is to determine a range of characteristics that are sufficiently general to be prohibitively costly or technically 

impossible for trackers to avoid. Second, we relate characteristics of single images, which we derive from 

the data or the related studies on web tracking and ad detection, to other images within the same email. By 

evaluating each image within the context of the email, potential adjustment strategies by trackers need to 

consider the infrastructure and conventions used by the content handler. While we engineer and select 
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features based on domain-knowledge and theoretical considerations, future approaches could monitor 

possible patterns of misclassifications and actual tracker reactions.  

5.1. Image structure 

Image structure features are attributes that are directly associated with an image element and those referring 

to centrally defined style information from Cascading Style Sheets (CSS). For this category, featurization 

disregards HTML image attributes occurring in less than 1% of the images in our data set to avoid rare and 

custom tags and ensure that patterns are detectable and relevant. For tracking images, we expect image 

attributes to leave display options undefined or make the image harder to detect. For example, a manual 

inspection of a small set of tracking images suggests the attributes border (i.e., the thickness of the border 

around an image), style properties and their respective CSS commands, vspace and hspace, (i.e., white 

spaces around images) to have a good discriminatory power (Musciano & Kennedy, 2006).  

We further account for the total number of images and relative position of each image within an email. Our 

data exploration shows tracking pixels often occur as the first or last image in the email. We suspect that 

tracking software automatically appends the tracking image to the top or end of an outgoing email to not 

disturb the email content and furthermore is easier to implement if outsourced tracking services are 

employed. A second aspect is related to the number of occurrences of each unique image within an email. 

Images used for formatting or branding may be used more than once in one email, but there is no technical 

nor functional reason to reference the tracking image in an email several times. 

A very small image size is often regarded as a typical characteristic of tracking images. There are several 

ways image size can be specified. The <img> attributes width and height allow direct specification of the 

size of the displayed image when the website or email is rendered (Musciano & Kennedy, 2006). Height 

and width can also be set in the style option, sometimes as a maximum value or in relation to its parent 

block, or only one dimension can be specified, in which case the image is resized with fixed ratio. It is also 

possible to not set any size to display the image in its full size. Where no size is explicitly set, we try to 

extract the image size from the file name, where it is often indicated in the form image_180x120.gif or 

similar. Nevertheless, there remain both content and tracking images for which no size information is 

available, which are classified as “no area specified” (see Figure 4). However, there are several theoretical 

arguments to avoid classification based on image size. First, any image can be tracked independently of 

size and content. Since there is no technical restriction for tracking images to be of a specific size beyond 

saving server space, it is likely that tracker will adjust or randomize image size. Second, not all images 

below a size of 10 square pixels are used for personal tracking. Small or invisible images are also used for 

the design or formatting of the email content and false classification of these could corrupt display of the 
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email. We consequently exclude all image size features from the models with exception of the ratio of 

smaller images within the same email.  

5.2. Reference Structure and Content 

The majority of the features we propose relate to the referencing link that points to the image (i.e., the URL) 

with two goals. First, features describe the general structure of the reference to detect patterns that differ 

from the other image references within the same email, which suggests a third-party tracker. Second, 

features capture patterns that suggest the existence of a user identifier. Each tracking image reference 

necessarily contains a unique user ID in the image reference (see Section 2) in order to match the image 

access to a specific email recipient. While the identification of the particular ID of a single user is useful 

only within the context of the user and the specific sender, there is large potential in features that identify 

the characteristics of user ID and are resilient to changes by the tracker. In order to capture a range of 

possible ID structures, we create features that describe the characteristics of the reference path, the content 

in terms of the reference as a string, and the similarity of each reference to other images in the same email. 

The reference structure is captured by a set of features targeting the link folder tree and the characteristics 

of each of its elements. In addition to the total length and number of elements, we further break up each 

element in the file path based on punctuation characters. This allows us to collect the characteristics of sub-

domains and the referenced files. The observation that the vast majority of tracking images are different 

from the content images in each mail, which in turn tend to be similar to each other, motivates featurization 

to capture the similarity between references in the same email. We measure link similarity by the 

Ratcliff/Obershelp text distance between reference URLs (Ratcliff & Metzener, 1988). This text similarity 

has the property that identical ID tags between references tend to substantially have a high impact on the 

similarity value due to their relative length. To better capture structural similarity, we additionally quantify 

the deviation from the majority of references in the same email on several of the features discussed above, 

including relative reference length and relative path depth.  

A direct approach to flag user identifiers within image references is to blacklist keywords that indicate 

tracking functionality. We can identify keywords through text analysis of the references by defining each 

reference link as a bag of words separated by punctuation or special characters and filtered for rare terms. 

We construct five binary features indicating the existence of tokens that have the highest ratio of occurrence 

in tracking vs. non-tracking images, such as uid or open, following the idea is that at least parts of the 

reference are usually human-readable for convenience. In cases where no random or hashed identifier is 

used, an @-sign within the URL identifies cases where the email address of the recipient is used as a user 

identifier directly. While predictive, any specific keywords exist for convenience only and are easily altered 

or omitted by trackers. Keyword features are consequently excluded from the model features. 
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A resilient heuristic for ID-like structures is to count the number of specific special characters that fulfil a 

technical role in the tracking infrastructure. In particular, parameters like the user and campaign identifier 

are passed to tracking scripts through the reference URL. The URL structure required to correctly parse the 

parameter is defined in public standards (Berners-Lee, Fielding, & Masinter, 1998). The parameters are 

included behind the file name after a question mark with each key-value pair linked by an equal sign. In 

contrast to arbitrary keywords, these characters are a necessary component of the tracking infrastructure.  

Detection of the structure of identifiers is feasible by counting the occurrences of patterns in the sequences 

of upper-/lowercase letters and numbers and the distribution of single letters. These are motivated by the 

observation that hashes and randomly created image and file names as well as user IDs are expected to 

contain patterns, e.g. multiple changes in capitalization, and letters that are less common in human-chosen 

terms. To this end, we create features that capture the difference between how often a letter occurs within 

a reference to the average number of time the same letter occurs within references of the same email. While 

these characteristics are within the control of trackers, the design of user IDs which avoid the range of the 

features requires prohibitive effort. To reduce the set of variables based on letter distribution, we employ 

preliminary testing using a random forest model on a subset of the data and select the letters b, f, m, and w 

as the only predictive letters based on the variable importance score described in Section 7.1.  

5.3. Image Server 

External tracking providers regularly host tracking images on their own servers, while content images are 

likely hosted by the email sender. Even within the same company, we expect images to regularly be 

provided by different subdomains depending on the process owner. This is supported by our sample, in 

which more than half of the servers do not host any tracking images. About one-third of the unique domains 

host tracking images only, while the remaining servers were observed to host both types of images. We 

capture information on the servers sending the email and hosting the referenced images without restricting 

the features to specific servers occurring in the collected data. To achieve this, we extract the ratio of images 

that share the same domain and whether the image host matches the email sender.  

5.4.  Header Components 

An email is composed of an email body and an email header. The email header contains technical 

information usually not visible to the end user as well as the sender name, address and subject line. An 

indicator for a match of the sender name and the image name aims to capture consistency between the 

sender and image host. Analysis of the data also shows that a single ID can be used to identify a user or 

specific message for tracking and to associate unsubscribe requests or email replies with a recipient. In 

these cases, the respective header fields and the tracking image reference contain an identical ID string. We 

consequently create features that indicate if parts of each image reference match the content of the header 
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fields List-unsubscribe, Return-Path, and Received-SPF. These features exploit that one user ID may be 

used to identify a user in different parts of the infrastructure. While the relevant parts of the sender’s 

infrastructure may lie within the control of the tracker, sufficient changes to the infrastructure will likely be 

complex and costly. 

5.5. Server Black-/Whitelisting 

Server black- and whitelisting plays a significant role in advertisement and spam detection (Cormack, 

2008). In the context of email tracking, the elements of the lists are the image servers that are referenced in 

the emails. This is an important difference to SPAM classification, where usually the sender or mail-transfer 

agent is the object of investigation. Although the data suggest that to block images from servers that have 

hosted a high ratio of tracking images in the past could be an effective way for identifying tracking images 

in the data set, the identified servers do not generalize to other companies and potentially not even to one 

company over a longer period of time. Potential exceptions are third-party tracking services. Since these 

services take full control of tracking image creation and hosting, their servers show the same pattern, 

independently of the specific client (see Table 3).  

To avoid overfitting the classification model to our specific data set, we exclude the identified blacklist and 

the server locations from model training. Instead, we propose that the images could be filtered according to 

a black-/whitelist in combination with automated detection or prior to the application of the classification 

model with the additional benefit of reducing the number of images that need to be classified by the model. 

The drawback is that these lists are specific, quickly outdated, and require high maintenance effort (Ma et 

al., 2009b). We use the above list as baseline in the empirical tests below with the caveat that the blacklist 

could be extended by a comprehensive analysis of the tracking service market in general, which is beyond 

the scope of this study. 

Table 3: Identified tracking service providers and their tracking reference structure 

Third-party tracker Typical reference structure 

Acxiom Digital http://open.delivery.net/o?[ID] 
Artegic AG http://[CLIENT].elaine-asp.de/action/view/[ID]/[...] 
Conversant (former Dotomi) http://ads.dotomi.com/cookieredir/[CLIENT[/[...].php?[ID]=1 
Doubleclick (Google) http://ad.doubleclick.net/ad/[…]/[…];ord=[ID];u=[…]? 

Mailchimp http://[CLIENT].[…].list-
manage.com/track/open.php?u=[…]&id=[...]&e=[ID] 

Adestra http://[CLIENT].msgfocus.com/t/[ID].png 
MarkMonitor http://cl.exct.net/open.aspx?[ID]&d=[…] 
AppNexus http://ib.adnxs.com/getuid?http://[…]/[ID]/[...] 
Criteo http://er.prod.verticalresponse.com/[…]/[ID]/pixel.gif 
Litmus https://[CLIENT].emltrk.com/[CLIENT]?d=[MAIL] 
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Optivo https://tracking.srv2.de/op/[…]/[ID]-[ID]-[ID].gif 
Bigfoot Interactive http://pix.bfi0.com/t.gif?k=[…]&c=[…]&s=[ID] 
Mailermailer http://m1e.net/c?[ID] 
VerticalResponse http://cts.vresp.com/o.gif?[…]/[ID]/[…] 

6. Methodology 
6.1. Experimental setup 

To verify the effectiveness of the proposed features and the image-classification framework, we empirically 

test the accuracy of tracking image detection in a real-life environment. This prepares the development of 

a fully-functional tracking detection system, in which classification accuracy must be reliable over time and 

also perform well for senders not included in our sample. We approximate this performance by evaluating 

classifiers on three dimensions. We report performance on a typical test-set split from the training data, out-

of-sample, and expand these results with an analysis of two additional test sets. The latter contain 

newsletters from the same companies sent after the training period, out-of-time, and from companies not in 

the training set, out-of-universe. Figure 6 summarizes the structure of the training and test setup including 

the size of the final data sets. The out-of-sample and out-of-universe test sets are drawn randomly from the 

data collected until October 31, 2015. The out-of-time test sets are emails received in 3-month-periods after 

the training period. The rest of this section describes the data sets in detail.  

The training data consists of HTML emails received within a 5-month period between June 1 and October 

31, 2015. It encompasses 215,565 images from 5,478 unique emails. For out-of-sample testing, we 

randomly select 548 (10%) of these emails and their images to evaluate models trained on the remaining 

data. The images in the test set are similar to the training data images in that they contain emails from the 

same time period as the training data and from senders contained in the training data. The sampling process 

is repeated ten times, respectively. Repeated testing ensures that results are reliable and not due to the 

random set of emails or companies selected for a single test set. This testing procedure is standard in the 

machine learning literature and comparable to the approach in Bender et al. (2016).  
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Figure 6: Structure and size of the training and three test sets (random sampling of out-of-sample emails and 
out-of-universe companies repeated 10 times) 

To construct the out-of-universe test set, we randomly select 30 companies (identified by their sender 

domain) and assign all of their emails and images to the test set. Since no images from emails of these 

companies are used to train the model, the corresponding tracking infrastructure and reference structures 

are entirely unknown to the classifier. Testing on unknown tracking structures allows us to evaluate the 

performance of the final model on emails sent by different companies as an estimate of the performance of 

the classifiers on unknown senders in a real-world setting. In practice, the ability of the classifier to 

generalize to tracking infrastructures and senders beyond the 300 companies collected for this research is 

crucial. The sampling procedure is again repeated 10 times. 

In order to capture a potential degradation of classification performance over time, we further define out-

of-time test sets.  The emails received after the training period, i.e. from November 1, 2015 until January 

31, 2017, are divided into five sets each of which covers a three-month period. Since the content and 

structure of the emails and company infrastructure are expected to change over time, the results on the out-

of-time sample provide an estimate of the performance of a static classifier after an extended period of time 

has passed. Since the difficulty of collecting ground-truth data inhibits frequent updating of the model or 

online learning, robust performance over time is an essential requirement to a reliable blocking approach. 

As part of data preparation, we sample a subset of images from the training data for model estimation. The 

actual distribution of tracking images in the training data, which we use to build binary classifiers, may 

introduce two forms of bias. First, tracking images make up 8.1% of images in the training data leading to 

a skewed distribution between the target classes with potentially little variation within non-tracking images 

in a single email. Unbalanced target classes are known to cause an undesired focus of classification models 

on the majority class (Verbeke, Dejaeger, Martens, Hur, & Baesens, 2012). Second, the numbers of tracking 

images per email vary from 0 to 57 and thus differ substantially. Hence, tracking images of companies that 

include a large number of tracking images into their emails may be overrepresented in the data. This may 

introduce a sampling bias as a classifier may focus on frequent image structures sent by a small number of 

Training data
Approx. 4,000 e-mails

Total data
21,500 e-mails

Out-of-sample 
Approx. 2,000 e-mails

Out-of-time 
Approx. 16,000 e-mails

Out-of-universe
Approx. 2,000 e-mails 

June 
2015

Jan
2017
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companies. To overcome these issues, we resample the training data through randomly selecting up to two 

tracking and content images, respectively, from every email in the training set. For emails containing less 

than two tracking or content images, respectively, all available images are selected. This approach excludes 

images from emails with a high number of tracking images and thus addresses the sampling bias. Our 

resampling also returns an approximately equal amount of tracking and content images for model training. 

To achieve this, it discards a sizeable fraction of content images, which suggest that our sampling approach 

can be considered a form of undersampling (Viaene & Dedene, 2004).  

Regarding the application context of tracking prevention, it is important to take into account that the costs 

associated with different types of errors are uneven. Misclassifying an actual content image as tracking 

image, and thus filtering the image, may impede readability of the email and negatively influence user 

experience. On the other hand, misclassifying tracking images, and thus failing to block tracking, impedes 

user privacy. The proposed selective prevention system is intended to block specific images rather than all 

images in an email in order to inhibit the user experience as little as possible, while ensuring a maximum 

level of user privacy. If the cost ratio between false positives and false negatives can be specified, 

application specific costs can be included into model training, for example through increasing the ratio of 

target observations in the data via sampling or a reweighting of the model error (Viaene & Dedene, 2004). 

However, error costs appear an abstract construct in the case of tracking prevention. The misclassification 

costs depend on the personal risk assessment of an individual user and how she evaluates the relative 

severity of a privacy breach against the inconvenience associated with manual downloads of blocked 

images. Given these complications, we argue that a cost-sensitive model estimation is impractical in the 

focal application context and consider the cost imbalance through post-processing of model predictions 

described in Section 7.2. 

6.2. Model Selection 

We train and test several state-of-the-art machine learning algorithms to identify the binary classifier that 

is best suited to classify images as “tracking” or “non-tracking” based on the proposed features. Since prior 

work does not provide information on the performance of classifiers in this application, our selection of 

methods is based on classifier benchmarks in other domains (Lessmann, Baesens, Seow, & Thomas, 2015; 

Verbeke et al., 2012). All methods take numeric and categorical features as input to identify potentially 

non-linear patterns and produce a probability estimate of class identity given the feature values for an 

unknown observation. Each algorithm provides a number of tuning parameters, which describe, for 

example, the optimization behavior and complexity of the model. Table 4 provides a list of candidate 

models and parameters considered in the study. A comprehensive discussion of the classifiers is beyond the 
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scope of the paper and available in, e.g., Hastie, Tibshirani, and Friedman (2002). We determine the best 

set of tuning parameters chosen using five-fold cross validation on the training set.  

Table 4: Classification methods and meta-parameter settings  

Learning Algorithm 

Artificial Neural Network (Multilayer perceptron) 

Three-layered architecture of information processing-units referred to as neurons. Each neuron receives an 
input signal in the form of a weighted sum over the outputs of the preceding layer’s neurons. This input is 
transformed by means of a logistic function to compute the neuron’s output, which is passed to the next layer. 
The neurons of the first layer are simply the covariates of a classification task. The output layer consists of a 
single neuron, whose output can be interpreted as a class-membership probability. Building a neural-network 
model involves determining connection weights by minimizing a regularized loss-function over training data. 

No. of neurons in hidden layer: 3, 5, …, 13 

Regularization parameter: 2[-4, -3.5, …, 0] 

Random Forest 

The ensemble consists of fully-grown CART classifiers derived from bootstrap samples of the training data. 
In contrast to standard CART classifiers that determine splitting rules over all covariates, a subset of covariates 
is randomly drawn whenever a node is branched, and the optimal split is determined only for these preselected 
variables. The additional randomization increases diversity among member classifiers. The ensemble 
prediction follows from average aggregation. 

No. of member classifiers: 2000 

No. of covariates randomly selected for node splitting: 5, 8, 10, 12, 15, 20 

Stochastic Gradient Boosting 

Modification of the AdaBoost algorithm, which incorporates bootstrap sampling and organizes the 
incremental ensemble construction in a way to optimize the gradient of some differential loss function with 
respect to the present ensemble composition. We employ tree-based models (CART) as member classifiers. 

No. of member classifiers: 10, 25, 50, 100, 250, 500 

Learning rate: 10[-4, -3, …, -1] 

Max. tree depth: 2, 4, 6, 8 
Note that the table depicts only those meta-parameters for which we consider multiple settings. A classification method may 
offer additional meta-parameters. 
We consider all possible combinations of meta-parameter settings for learners such as artificial neural networks that exhibit 
multiple meta-parameters. 

 

The performance of the state-of-the-art classifiers is compared to three benchmarks. First, we employ a 

standard logistic regression model. This benchmark allows us to shed light on the trade-off between an 

interpretable linear model and more complex nonlinear classifiers, which are opaque but supposedly more 

accurate. Second, we consider the blacklist approach described above as a representative of a manually 

designed detection rule. This benchmark is to confirm the need for data-driven detection models. Third, we 

consider a static decision rule based on image size (area below 3 square pixels or not specified) and file 

format (categories none, php or other). Previous research (Bender et al., 2016) and our exploratory analysis 
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finds these simple features to be highly predictive. It is thus interesting to check the detection performance 

of a corresponding classifier and whether it decreases over time. Clearly, the simple classifier, which we 

refer to as baseline model in the following, is vulnerable to even small adjustments by trackers. The 

manipulability of image size and displayed file format in particular disqualify this approach as a resilient, 

long-term solution. For the data employed here, examining the detection performance of the baseline model 

on the out-of-time data will shed some light on the degree to which an evolution of tracking practices has 

taken place over the observation period. 

7. Empirical results 
The quality of the detection model depends on its overall performance, generality, and resilience. We 

measure performance using statistical indicators of predictive accuracy, and generality as model 

performance under different experimental conditions. In the following, we analyze feature importance to 

determine the overall number and type of features on which the prediction of a detection model is based 

and relate these findings to the ease of feature manipulation. We then compare the performance of the 

models on the different test data sets in terms of their ability to detect tracking images while producing few 

false alarms. Both characteristics are important to maximize security and usability for the user, respectively. 

7.1. Feature importance and resilience 

An effective tracking blocker must be able to classify images that vary substantially from the images 

available for training. Since only a subset of potential senders can be sampled to collect ground-truth data, 

it is important that features generalize to unobserved senders. Furthermore, the detection engine should be 

resilient against efforts by trackers to modify their infrastructure to avoid detection. Before discussing the 

overall performance of the classifiers, we proceed with identifying the salient characteristics of tracking 

images and evaluate the strength of the proposed new features as determined by the models. Figure 7 shows 

the 15 top-performing features according to normalized feature importance averaged over all classifiers and 

presents their respective importance values for each classifier.  

We use standard algorithm-specific methods to calculate the feature importance scores. For random forest 

and gradient boosted trees, the score corresponds to the relative improvement in the splitting criterion due 

to the split; calculated as the square root of the sum of squared relative gain of splits on the feature in a 

single tree and averaged over all trees in the model (Hastie, Tibshirani, & Friedman, 2009). For artificial 

neural network, the hidden-output connection weights of each hidden neuron are partitioned into 

components associated with each variable’s input neuron using Garson’s algorithm (Goh, 1995). 
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Figure 7: The 15 most predictive variables selected according to average feature importance across all 

classifiers. Features marked with an asterisk have been introduced in Bender et al. (2016) 

Two main conclusions emerge from Figure 7. First, the ranking of variables is similar for all algorithms for 

the top feature after which there are substantial differences in the ranking between the tree-based models 

and the artificial neural network. This indicates that there are several highly predictive features within our 

selection of resilient features. All models rely heavily on the occurrence of a question mark, which indicates 

that parameters are passed on to a script and the folder structure of the image URL. Beyond the count of 

uppercase letters, the random forest model seems to consider a larger number of features than the gradient 

boosting model, e.g. the absolute and relative length of the filename. The neural network distributes 

importance more evenly and accounts for several defined patterns ignored by the tree-based models, e.g. 

the count of numbers or case-changes. It also places relatively large weight on email header characteristics, 

e.g. a match of image and sender domain. In practice, we would expect sparse models to generalize better 

to unknown data, but models considering a more diverse set of features to be more resilient to changes in 

tracking patterns. 
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Second, we observe that the novel features rank high in average importance over all classifiers and make 

up nine of the fifteen top features. These features are designed for deployability and resilience by capturing 

patterns that cannot be adjusted without a negative effect on the visibility of the tracking image or its 

tracking capability. On the side of technical restrictions, the occurrence of a question mark in the reference 

provides a convenient way to pass parameters to a tracking script and avoiding it would require costly 

changes to the data collection infrastructure. Even with an alternative solution, the existence of at least one 

unique identifier is necessary to map the image access to a specific email and email recipient. The existence 

of these IDs is captured by the (relative) length and number of folders as well as the length of the file name 

in the top features depicted in Figure 7. The large number of recipients requires a certain length and 

complexity of the ID, which consist of a random number and letter sequence. The randomness of these IDs 

is captured by the deviation in the number of times a letter is used in each reference to the average 

occurrence within the email.  

On the side of organizationally costly adjustments, changes to the relative number of folders in the URL 

and all other relative measures regarding the reference structure require flexibility and coordination between 

different organizational units responsible for the management of content images and tracking images, 

respectively. For third party trackers, an additional issue is the implementation of changes to the existing 

server and folder infrastructure adjusted for each client, which requires the restructuring of existing systems. 

For example, the unification of reference folder length to hide tracking images, which commonly reside in 

very deep or very shallow folder trees, would require a standardized path structure set by the content 

management unit that still allows a convenient work environment and does not simultaneously increase the 

systematic deviation captured by the other relative features, e.g. length of folder name. 

Given the high ranking of resilient features designed from technical restrictions and domain-knowledge, 

we expect the classifiers to be general and resilient with regard to unseen senders and changes over time, 

and against expected deliberate changes in the tracking infrastructure as outlined above. The following 

section evaluates the former two claims empirically.  

7.2.  Model performance 

We evaluate classifier performance based on the area-under-the-ROC-curve (AUC), which captures a 

classifier’s ability to discriminate between tracking and non-tracking images. We also use sensitivity and 

specificity statistics based on the optimal probability threshold (see Section 6.1) to evaluate the tracking 

detection accuracy of a classifier vis-à-vis its ability to not block content images.  

The AUC allows us to summarize the performance of each classifier in a single metric aggregated over all 

potential thresholds and test the differences in performance statistically. The AUC for each classifier and 

test set, averaged over ten repetitions of random sampling, is given in Table 5. Note that the AUC is bounded 
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between 0 and 1 (perfect discrimination), where a value of 0.5 corresponds to a random classifier. We also 

report the average ranks as the basis of a statistical analysis of model performance comparing the classifiers 

to the best performing classifier (Demšar, 2006). The last row of Table 5 depicts the test statistic and p-

value of a Friedman test of the null-hypothesis that all classifier ranks are equal. Given that we can reject 

the null-hypothesis for all performance measures (p < .00), we proceed with pairwise comparisons of a 

classifier to the control classifier using the Rom procedure for p-value adjustment (García, Fernández, 

Luengo, & Herrera, 2010). Table 5 depicts the p-values corresponding to the pairwise comparisons in 

brackets. Italic face indicates that we can reject the null-hypothesis of a classifier performing equal to the 

best classifier (i.e., p < .05).  

For all test sets, the random forest model performs best and thus serves as control model for statistical 

testing. We observe the benchmark models to perform significantly worse than the random forest classifier 

at the 5% level but are unable to establish a significant difference in performance between the random forest 

and the gradient boosting or neural network classifier. The results for the out-of-sample test set are 

comparable to previous studies and support the view that machine-learning classifiers are highly effective 

in identifying tracking elements (Bender et al., 2016). All non-linear classifiers achieve close to perfect 

performance and perform significantly better than the baseline model, which classifies images based on 

image size and file format. The blacklist model provides some discriminatory power. However, it performs 

significantly worse than the best alternative classifier.  

Out-of-sample results represent the performance of a detection engine under ideal conditions. In practice, 

we cannot expect emails to originate from the same senders as in the training data. Additionally, the 

challenges in collecting labelled training data restrict model training to a relatively small number of 

different senders and impede regular re-training or updating of classifiers. We therefore evaluate the 

classifiers on out-of-universe test cases, which include only images from companies on which the model 

was not trained, and out-of-universe-and-time test cases, which include images from companies on which 

the model was not trained received after the end of the training period. As expected, we observe a decrease 

in AUC for all classifiers when applied to the more challenging test sets. This decrease is lowest for the 

random forest and gradient boosting models at 0.006 and 0.007 AUC points and highest for the logit model 

with a difference of 0.026 AUC points, suggesting that the tree-based ensemble models generalize well.  

Decreasing performance of the baseline model is surprising given its simple decision rule set and hints at a 

change in tracking practices in the out-of-universe/-and-time test sets. We attribute the fact that AUC 

increases for the blacklist model on more challenging test sets to sampling variance. The performance of 

the blacklist model is high whenever companies that use trackers from the blacklist are sampled for a 

random test set, and low otherwise. 
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Table 5: AUC and average rank classifier performance for each test set (10 sample average) 

  
Out-of-sample   Out-of-universe   Out-of-universe  

& -time 

  AUC Rank     AUC Rank     AUC Rank   
Blacklist 0.596 6.00 (0.00)  0.673 6.00 (0.00)  0.637 6.00 (0.00) 
Baseline 0.969 5.00 (0.00)  0.953 5.00 (0.00)  0.938 4.80 (0.00) 
Logit 0.998 4.00 (0.04)  0.982 4.00 (0.03)  0.972 3.95 (0.03) 
Neural network 1.000 2.10 (1.00)  0.994 2.40 (0.95)  0.981 2.55 (0.68) 
Random forest 1.000 1.95 -  0.997 1.80 -  0.994 1.75 - 
Gradient boosting 1.000 1.95 (1.00)  0.996 1.80 (1.00)  0.993 1.95 (0.81) 

            

Friedman χ2
5  49.57 (0.00)   48.43 (0.00)   44.65 (0.00) 

Values in brackets give the adjusted p-value corresponding to a pairwise comparison of the row classifier to the 
best classifier (random forest). Italic face indicates significance at the five percent level. The last row shows the 
χ2 and p-values of a Friedman test to verify that at least two classifiers perform significantly different. 

 

The excellent discriminatory performance of classifiers, even on the out-of-universe-and-time test set, 

facilitates two conclusions. First, the features that we propose in Section 5 are sufficient to allow near 

perfect classification of tracking images within newsletter emails. This is important empirical validation 

that it is possible to identify tracking images without relying on image characteristics that are controlled by 

trackers. AUC values close to unity suggest that a tracking detection system built on resilient features can 

provide effective protection in the long run. Second, the proposed classification models generalize to 

newsletter emails received after the training period and from unknown companies. Generalizability is 

crucial due to the high number of potential senders and the difficulties in data collection outlined in 

Section 4, which impede frequent updating of the detection model. 

Having established the predictive performance of the detection models, we examine the binary decision 

between loading and blocking an image in practice. This requires us to post-process the probabilistic 

predictions emerging from classification models. We obtain a crisp classification of images into tracking 

and non-tracking images through comparing probabilistic classifier predictions to a threshold. We then 

assess the accuracy of discrete class predictions in terms of the sensitivity and specificity of a classifier, i.e. 

the percentage of tracking and non-tracking images that are correctly classified, respectively. The definition 

of a threshold also offers an opportunity to account for uneven misclassification costs without having to 

specify actual cost values. We tune the probability threshold (for each classifier individually) on the training 

data set. Similar to applications in spam detection (Bergholz et al., 2008), medicine (Oztekin, Al-Ebbini, 

Sevkli, & Delen, 2017) and fraud detection (Viaene, Ayuso, Guillen, Van Gheel, & Dedene, 2007; 

Vlasselaer, Eliassi-Rad, Akoglu, Snoeck, & Baesens, 2016), the goal is to achieve a high detection rate with 
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the lowest possible rate of false alarms. For the empirical evaluation, we define the probability threshold to 

be the value that maximizes the specificity of a classifier at a fixed sensitivity of at least 99.99% on the 

training data. We acknowledge the choice of 99.99% to be subjective. It is based on the believe that many 

users might have a strong preference for privacy and consider the misclassification of a tracking image to 

be the much more “costly” error compared to misclassifying a content image. Having fixed the sensitivity 

of each model on the training data, we compare the models on the most challenging out-of-universe-and-

time scenario by comparing the sensitivity and specificity over ten random samples. In practice, sensitivity 

and specificity correspond to the ratio of detected tracking images and one minus the ratio of (erroneously) 

blocked non-tracking images, respectively. Results are presented in Table 6.  

Table 6: Sensitivity and specificity of detection models across ten random test sets 

 Out-of-universe & -time  
  1 2 3 4 5 6 7 8 9 10 Mean 

 Sensitivity  
Blacklist 0.03 0.19 0.35 0.23 0.47 0.28 0.15 0.29 0.41 0.51 29% 
Baseline 1.00 0.81 0.96 0.96 0.89 0.96 0.96 0.95 0.91 0.98 94% 
Logit 1.00 0.98 0.99 1.00 0.93 0.99 0.90 1.00 0.99 1.00 98% 
Neural Network 1.00 0.98 0.78 0.82 0.98 0.73 0.30 0.97 0.79 0.97 83% 
Random Forest 1.00 0.99 0.82 0.81 0.99 0.86 0.77 0.96 1.00 0.99 92% 
Gradient Boosting 1.00 1.00 0.86 0.85 0.84 0.88 0.80 0.96 1.00 0.99 92% 
 Specificity  
Blacklist 0.99 1.00 0.98 0.98 0.98 0.98 0.95 1.00 0.96 1.00 98% 
Baseline 0.94 0.94 0.96 0.92 0.95 0.90 0.95 0.93 0.93 0.98 94% 
Logit 0.54 0.93 0.78 0.59 0.80 0.74 0.89 0.76 0.56 0.59 72% 
Neural Network 0.96 0.98 1.00 0.99 0.98 0.98 1.00 0.99 0.94 0.99 98% 
Random Forest 0.90 0.98 1.00 0.99 0.97 0.99 1.00 0.99 0.95 0.98 98% 
Gradient Boosting 0.96 0.91 1.00 0.99 0.98 0.99 1.00 0.99 0.85 0.99 97% 
 

For all classifiers, we observe sensitivity to differ from our target value of 99.99%. Recall that this is the 

target value which we use to determine the classification threshold on the training data. Table 6 

demonstrates that applying this threshold to unknown data decreases sensitivity (i.e., the accuracy of 

tracking image detection). Considering the tradeoff between high sensitivity and a low false alarm rate, 

Table 6 reveals that the random forest classifier has a higher tendency to sacrifice sensitivity for higher 

specificity compared to the logit model. We attribute the sharper decrease in sensitivity for random forest 

to the fact that random forest achieves almost perfect discrimination on the training data (Table 5), which 

leads to a higher, less strict classification threshold after optimization. Overall, the results suggest that the 

excellent discriminatory power observed in terms of AUC (Table 5) translates well to the actual decision 
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problem under the proposed cutoff optimization scheme. When a user decides to allow loading external 

images for an email, the logistic regression or random forest classifiers robustly detect 98% and 92% of 

tracking images under the proposed system. At this level of performance, the detection models ensure a 

high level of user privacy under the most challenging conditions of an out-of-universe-and-time test. The 

negative effect on user experience is the false flagging of 28% and 2% of non-tracking images as tracking 

images, respectively. In the case of the random forest, we argue that the privacy gain outweighs the negative 

effect for users with even minimal preference for privacy. We judge the logistic regression under the 

proposed cutoff to be an alternative for users with a strong preference for privacy at the cost of a notable 

impact on user experience. 

 

Figure 8: Sensitivity after training period over five 3-month windows 

We further compare the dynamics of AUC and sensitivity of the selected models over time and determine 

a suitable interval for retraining each model. We conduct this analysis over five 3-month windows starting 

at the end date of the training data on out-of-sample test data to ensure sufficient sample size in each 

window.  Figure 8 shows no trend in performance for the random forest and only marginal decrease in 

performance for logistic regression starting after nine months, with all changes within a 1%-interval of 

starting performance. We attribute the slump in performance for the 3-6-month window to particularities in 

the email schedule for the subscribed newsletter. Taken at face value, the results suggest that a detection 

engine preserves performance for a period of at least nine months after training, at which point the logistic 

regression could be re-trained on more recent data to avoid deteriorating performance. No long-term time 

effect is observed for the random forest within the observed period. These results are encouraging for 

practical applications where data collection and retraining are challenging. Furthermore, higher robustness 
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of the random forest model supports the view that this model might be preferable to the logistic regression 

despite its lower sensitivity.  

8. Conclusion 
Email tracking can be used to gather identifiable and sensitive information on recipients without their 

consent or control, thus raising several security and privacy concerns. We describe the extent to which data 

can be collected that contains information on email reading behavior, system information, and location. In 

contrast to common web tracking, these data can be matched to an email address and, by extension, to the 

person behind the email account. Empirical analysis of over 30,000 emails from the 100 largest companies 

in Germany, Great Britain, and the United States, respectively, show that email tracking is widely applied. 

About 50% of all newsletter emails and close to 100% of emails in consumer-oriented industries include at 

least one tracking image. We identify the lack of a general, reliable and sufficient protection system against 

email tracking in previous literature and the software market, and propose a selective-prevention solution 

on the image level that is most suitable to balance privacy and usability.  

We use the collected data to build a detection engine for the identification of tracking images based on 

machine learning. To achieve this, we outline a general methodology to infer resilient features from the 

technical characteristics of the tracking process. We follow this approach to design a comprehensive set of 

features that ensure applicability and resilience against tracker counter-strategies in a real-world setting. 

We test three state-of-the-art machine-learning classifiers and benchmark expected performance against 

heuristics proposed in previous research in a realistic application setting. In particular, we take into account 

long-term changes of tracking structures and classification of emails from unknown senders through 

repeated random sampling of three test data sets. We find a random forest classifier to provide the best 

overall classification performance at a detection rate of 92% and misclassification rate of non-tracking 

images at 2% for newsletters received from unknown senders after the training period.  

Some caveats apply to the results gathered in this study, indicating directions for future research. The data 

used in this study contains commercial email newsletters, which exhibit important advantages for this 

research setting. Typical mail use involves additional mail categories, including private messages and the 

large category of spam and phishing emails. Further studies are required to check if our results generalize 

to tracking mechanisms in different types of email contexts. A fundamental threat to tracking image 

detection systems comes from the risk that actual content images could be employed for tracking. The 

proposed model could detect such images. However, their removal or blocking has a direct impact on the 

informational content of the email and thus conflicts with the interest of the user. Content-image tracking 

could be addressed using a server-side proxy solution. The server could cache all images with high tracking 

probability. Subsequent access to these (content and tracking) images from email recipients can then 
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reference the server. Trackers would observe image downloads but only from the server so that the privacy 

of individual users is not compromised. The role of the proposed detection engine in a server-side solution 

would be to improve efficiency. Through selecting likely tracking images the server does not have to cache 

all images in all incoming emails. Furthermore, the problem of using content images for tracking is 

mitigated by the fact that tracking applications are often provided by specialized third-party services, for 

which the implementation of tracking mechanisms to content images within an email would require far 

more effort than attaching content-less tracking images. With such separation of content-management and 

tracking, an integrated solution will be costly for companies to realize.  Further research on user behavior 

will prove useful to determine if users are willing to manually allow loading tracked content images. 

With an extension of the data collection period, an analysis of changes to the features employed by the 

models and monitoring of model performance over time may provide insights into developments in tracking 

infrastructure and active countermeasures. Taking the long-term perspective, we have outlined the 

strategies that are available to trackers in order to actively hide tracking images from simple detection 

heuristics. Based on the available data and observation period, we come to the conclusion that the proposed 

detection system performs effectively and stable on the basis of the proposed resilient features. Consistently 

high tracking image detection rates on out-of-time and out-of-universe data suggest that the distribution of 

feature values or tracking practices has not changed during the observation period. Such change may 

however occur in the future. Therefore, future research to replicate our results and to perform a longitudinal 

analysis of feature distributions to collect evidence for a potential distributional shift seems highly relevant.  
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