
Information Systems 97 (2021) 101702

S
a

b

c

a
v
d
b
s
p
e
a
l
o
u
T
g
[

s
t

b
(
s

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Enterprise-grade protection against e-mail tracking
Benjamin Fabian a,∗, Benedict Bender b, Ben Hesseldieck c, Johannes Haupt c,
tefan Lessmann c

Chair of E-Government, IT-Security and IT Management, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
Chair of Business Informatics, University of Potsdam, August-Bebel-Str. 89, 14482 Potsdam, Germany
School of Business and Economics, Humboldt-Universität zu Berlin, Spandauer Str. 1, 10178 Berlin, Germany

a r t i c l e i n f o

Article history:
Received 3 April 2019
Received in revised form 8 December 2020
Accepted 9 December 2020
Available online 17 December 2020
Recommended by Dennis Shasha

a b s t r a c t

E-mail tracking provides companies with fine-grained behavioral data about e-mail recipients, which
can be a threat for individual privacy and enterprise security. This problem is especially severe since
e-mail tracking techniques often gather data without the informed consent of the recipients. So far
e-mail recipients lack a reliable protection mechanism.

This article presents a novel protection framework against e-mail tracking that closes an impor-
tant gap in the field of enterprise security and privacy-enhancing technologies. We conceptualize,
implement and evaluate an anti-tracking mail server that is capable of identifying tracking images in
e-mails via machine learning with very high accuracy, and can selectively replace them with arbitrary
images containing warning messages for the recipient. Our mail protection framework implements a
selective prevention strategy as enterprise-grade software using the design science research paradigm.
It is flexibly extensible, highly scalable, and ready to be applied under actual production conditions.
Experimental evaluations show that these goals are achieved through solid software design, adoption
of recent technologies and the creation of novel flexible software components.

© 2020 Published by Elsevier Ltd.
1. Introduction

E-mail tracking is used to collect data on e-mail recipients in
similar way that web tracking is used to collect data on website
isitors. Web and e-mail tracking are popular marketing tools
ue to the increasing importance of accurate customer data for
usiness success [1,2]. Analysis of customer data is used to per-
onalize offerings and marketing layouts for an optimized market
osition as well as an advantage in product pricing [3]. Modern
-mail tracking methods allow the sender to determine how often
n e-mail was opened, the device used to read the e-mail, which
inks were clicked, and the location and time when the recipient
pened an e-mail [4,5]. In this context, the technology to measure
ser behavior is a competitive advantage in online marketing.
racking data are so valuable that companies specialize in their
athering and use selling of aggregated-data as a business model
6] or offering e-mail tracking as a service.

Despite its use in marketing applications, e-mail tracking is a
erious privacy and security threat for end-users and organiza-
ions. In contrast to cookie-based web tracking, e-mail tracking

∗ Corresponding author.
E-mail addresses: benjamin.fabian@th-wildau.de (B. Fabian),

enedict.bender@wi.uni-potsdam.de (B. Bender), b.hesseldieck@gmail.com
B. Hesseldieck), johannes.haupt@remerge.io (J. Haupt),
tefan.lessmann@hu-berlin.de (S. Lessmann).
ttps://doi.org/10.1016/j.is.2020.101702
306-4379/© 2020 Published by Elsevier Ltd.
is often used by first- and third parties to collect data without
permission or knowledge of the e-mail recipient, while the e-mail
address of the recipient serves as a personal identifier. Beyond its
legal usage, hackers and criminal spammers use e-mail tracking
to determine if an e-mail account is active and whether the owner
opens attachments, which paves the way for system intrusions
[7]. Moreover, spam as modern crime poses several challenges in
detection and prevention [8]. Despite the known risk and higher
public scrutiny of the collection of user data, recent regulation
initiatives such as for web tracking elements do not exist for e-
mail tracking approaches [9]. In addition, the technical process of
e-mail tracking, which does not require cookies, makes it difficult
to block without affecting the user experience and there exist
no popular applications similar to ad blockers that disable e-mail
tracking on the technical level.

Prior research on e-mail tracking examined the principles [4,5]
as well as the usage across regions (Bender, Fabian, Haupt, &
Lessmann; [10]) and the actual employment of data gathered
through e-mail tracking [11]. In Haupt et al. [12], we examined
the potential of machine-learning to identify tracking elements
in e-mail communication. These earlier results indicate that ac-
curate detection is possible, which may be seen as a first step
towards tracking prevention and privacy protection. Achieving
the latter in an enterprise context, however, requires a more
holistic approach that considers real-world requirements related

https://doi.org/10.1016/j.is.2020.101702
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2020.101702&domain=pdf
mailto:benjamin.fabian@th-wildau.de
mailto:benedict.bender@wi.uni-potsdam.de
mailto:b.hesseldieck@gmail.com
mailto:johannes.haupt@remerge.io
mailto:stefan.lessmann@hu-berlin.de
https://doi.org/10.1016/j.is.2020.101702


B. Fabian, B. Bender, B. Hesseldieck et al. Information Systems 97 (2021) 101702

t
c
d

r
t
t
t
e
l
s
m
i
g
r
e
c
w
t
[

[
o
a
t
t
d
o
e
w

2

h
p
t
i
e

s
i
(
o
t
a
s
r

t
e
r
v
(
a
t
(
t
t
t
b
e
w

p
o

[
P
s
p
t
c
a
o

c
t
g
i
t
t
[
P
u
r
a
W
m
c

n
f
w
e
o
m
m
e
a
a
b
A
l
a

a
S
a
c

o the efficiency and scalability of a detection engine and empiri-
al insights how such a detection system behaves under realistic
eployment conditions.
In this paper, an extension and culmination of our previous

esearch, we close this gap in the field of privacy-enhancing
echnologies by conceptualizing and implementing a novel pro-
ection framework against e-mail tracking in an enterprise con-
ext. We provide an answer to the question how a reliable and
fficient anti-tracking mechanism can be realized for enterprise-
evel environments. We realize a professional anti-tracking mail
erver that is capable of identifying tracking images in e-mails via
achine learning and selectively replace them to mitigate track-

ng. Our mail protection framework is developed as enterprise-
rade software, which is flexibly extensible, highly scalable, and
eady to be applied in actual production conditions. Experimental
valuation shows that this is achieved through corresponding
hoices regarding technologies and the creation of a solid soft-
are design. To enable practical adoption and also facilitate fu-
ure research, we provide our software as open source on GitHub
13].

Our study follows the paradigm of design science research
14]. The structure of this article is aligned with the major steps
f this research method, starting with the problem identification
nd motivation in this introductory section. In the next section,
he required research background is presented in order to prepare
he objectives and requirements in the third section. Then, the
esign and development process of our software artifact is elab-
rated, followed by a demonstration and thorough experimental
valuation. Finally, major contributions, limitations and future
ork are discussed.

. Background and related work

To provide an overview of e-mail tracking methodology and
ow it affects user privacy, we first discuss the e-mail tracking
rocess and detail how and what kind of information can be cap-
ured about mail recipients. This analysis was initially published
n Bender et al. [15] and provides a foundation for designing
ffective countermeasures in the current article.
The tracking process (Fig. 1) starts with the preparation and

ending of an HTML-based e-mail, which includes a tracking-
mage reference. This mail passes several mail transfer agents
MTAs) until it reaches the receiver’s MTA. When the recipient
pens the e-mail with a tracking image, the mail client requests
he image from the referenced web server, which logs this request
nd provides the image to the client. Log analysis at the web
erver allows information to be deducted on the recipient’s e-mail
eading behavior.

In order to assess the extent of primary (i.e., direct) informa-
ion available to a tracker, we constructed a prototypical tracking
nvironment, which includes an Apache webserver to log data
elevant to e-mail tracking. The entries in the server log file pro-
ide seven major pieces of information: (1) the Internet Protocol
IP) address of the host that requests the image file, (2) the date
nd time of the file request, (3) the request itself, which includes
he URL and GET variables, (4) the status code of the request,
5) the amount of bytes that have been sent in response, (6)
he referrer URL from the client, and (7) a string characterizing
he user agent. Furthermore, when a file is requested multiple
imes (i.e., it generates multiple entries), it allows information to
e derived with respect to a user’s reading behavior. In our test
nvironment, a new log entry was created every time an e-mail
as opened.
With respect to secondary (i.e., indirect) information, the first

ossibility is to induce the fact that the user read or at least
pened the e-mail. The existence of multiple log entries indicates
2

that the e-mail has been opened multiple times. The combination
of multiple entries for one mail, as well as multiple entries from
one user for different mails, provides insight into the recipient’s
e-mail reading behavior, also across devices.

The usage of IP geolocation gives indications on possible user
locations also allows the detection of forwarded mails. Special
log entries allow one to determine whether an e-mail has been
printed [16]. It is also possible to gather information about the
user environment by analyzing the user agent string, which is
part of a log entry [17]. Based on a reverse lookup of an IP
address, a log entry may also help determine a user’s affiliation
to a company or institution.

We now discuss related scientific work. Publications on the
general issue of web tracking are numerous, ranging from its
usage [2,18–22] to its detection [23–26] and prevention [24,27–
29]. Some publications on web tracking hint at the opportunity
of applying tracking mechanics also to HTML-based e-mail [6,25,
27,30,31]. However, none of these studies explore this possibility
in depth.

E-mail tracking itself is mainly investigated and utilized in the
context of at least four research fields: marketing, malicious e-
mails, spam, and privacy. The first research stream explores the
effects of e-mail marketing on the recipients and its optimization
32–35], while utilizing data gathered through e-mail tracking.
ublications from Bonfrer and Drèze [36] as well as from Ha-
ouneh and Alqeed [37] investigate the tracking technology and
rocess from a marketing viewpoint and emphasize the impor-
ance of tracking newsletters and any other e-mail marketing
ommunication. The Direct Marketing Association (DMA) annu-
lly releases research reports about e-mail tracking and its impact
n online marketing [3].
The second research avenue is the field of malicious e-mail

ontent or attachments, where e-mail tracking is used to analyze
he mechanics and velocity of spreading viruses or malicious pro-
rams [38,39]. Third, the issue of spam is necessarily an important
ssue in e-mail research, but also e-mail tracking has connec-
ions to it. Mechanics of e-mail tracking are used to identify
he origin of spam mail in order to add the sender to blacklists
40–42,42]. The fourth field this article draws upon is privacy.
rotecting privacy against tracking that aims to expose the end-
ser’s personal information to marketers is the main focus of this
esearch direction. Various environments are investigated, such
s the company level, the browser, and e-commerce [4,5,43–45].
hile prior studies considered only the technical feasibility of e-
ail tracking, Bender et al. [11] also showed the actual use of
ustomer-behavior data derived from such tracking.
Although the issue of e-mail tracking is analyzed in literature,

o effort has been devoted to the creation of a software solution
or end-users, nor are prevention methods explored in depth,
ith the exception of Bonfrer and Drèze [36] and Englehardt
t al. [4]. The former focused on investigating the current status
f e-mail tracking and the design space for effective counter-
easures and also provided initial drafts and evaluation of a
achine-learning based detection model. Englehardt et al. [4]
mpirically surveyed the current landscape of mail tracking with
particular emphasis on third-party trackers. Furthermore, they
ssessed the incompleteness of existing defense solutions, and
riefly outlined a novel anti-tracking strategy based on filter lists.
dditionally, Haupt et al. [12] benchmarked various machine-
earning approaches and thereby guided the design of effective
nd reliable detection mechanisms.
These results provide the motivation for the countermeasures

nd detection model utilized by this study’s software artifact.
haring the goal of preserving e-mail end-users privacy, this
rticle aims to develop a comprehensive and enterprise-grade
ountermeasure solution.



B. Fabian, B. Bender, B. Hesseldieck et al. Information Systems 97 (2021) 101702

3

c
d
e
u
s

Fig. 1. E-Mail Tracking Principle.
Fig. 2. Comparison of status quo and the desired tracking prevention.
. Solution objectives

The objective of the study is to integrate prior research on the
haracteristics of e-mail tracking elements and their automated
etection and develop a reliable and efficient enterprise-level
nvironment to block e-mail tracking with minimal impact on
ser experience. Visualizing the functionality of the envisioned
ystem, Fig. 2 shows the (unprotected) as-is and future process
scenarios for tracking prevention, including the major functional
components (detection and replacement). The corresponding sys-
tem requirements can be found in Table 1 and are discussed in
the following.

Our previous work identified different anti-tracking strategies.
These can be categorized in preventive and deceptive approaches.
Preventive approaches aim strive to hide or modify the infor-
mation, so that obtained information is selected, modified, or
deliberately corrupted information. In contrast, selective counter-
measures are based on identifying and blocking tracking elements
within an e-mail (Fig. 3). The idea is to categorize the referenced
images into content-providing and tracking images. Assuming
that images of the former category do not provide tracking func-
tionality, they remain untouched, whereas tracking images are
removed from the e-mail. The strength of the selective concept
is the combination of systematic prevention of tracking images
while preserving the full user-experience. The possible pitfall is
the risk of misidentification. The solution will work only well with
accurate algorithms for tracking-image identification.
3

Fig. 3. Selective Blocking Approach.

Based on the discussion in [15], we concentrate on a selective
identify-and-block strategy since these are assumed to provide
the best balance between preventing user tracking and sustaining
user experience. Accordingly, we concentrate on this approach for
the proposed solution. Therefore, the first requirement for the so-
lution is to realize the concept of selective blocking (requirement
1).

Following the selective blocking concept, a detection engine
for tracking elements is required to achieve accurate detection
that identifies tracking images in HTML-based mails which are
then exchanged an arbitrary non-tracking image [15]. Previous
studies identified relevant features and compared classification
methods for tracking image detection [12]. In short, the solution
is required to feature an accurate detection engine (requirement
2) as this determines the usefulness as well as the effectiveness
of the solution.



B. Fabian, B. Bender, B. Hesseldieck et al. Information Systems 97 (2021) 101702

s
e
t
p
t

n
e
d
l
e
a

m
p
t
w
e
t

c
c
m
m
d
a

p
5
o
s
f
a
p
a

h
c
l
b
d
f
t
s
t
c
f
r
o

4

o
a
c
a

4

s
t
1
i
s
n
o

Moreover, the universality (requirement 3) over different
enders and time are important to provide reliable protection also
ven against evolving tracking mechanisms [12,15]. This involves
he implementation of a detection engine, which after a training
eriod can automatically classify previously unknown images into
racking and non-tracking categories.

Concerning modularity (requirement 4), all system compo-
ents should be flexible exchangeable, including the detection
ngine so that the system is able to use different or additional
etection algorithms or frameworks in the future. System modu-
arity allows easy maintainability and extensibility. For example,
nabling developers to plug-in new machine learning models and
lgorithms into the framework.
Moreover, the system needs to provide scalability (require-

ent 5). It is only suitable for enterprise use if appropriate
erformance is demonstrated and the solution is easily scalable
owards high traffic. Large companies or e-mail providers deal
ith thousands of mails in a short timeframe. This demands an
lastic solution, supporting small-scale use cases while being able
o scale up to an enterprise level.

Finally, the solution should provide heterogeneous endpoint
overage. Given that user receive e-mail via different devices
lients, the solution needs to provide flexible coverage (require-
ent 6). Previous client-side approaches showed a poor perfor-
ance on this aspect [15]. In this regard, the solution should be
eployable at single endpoints or at more central stages such as
gateway, a mail server, or even in the cloud.
For flexible deployment options, we decided that the im-

lementation of the framework should not require more than
00 megabyte (MB) storage space and less than 250 megabyte
f memory (both without the detection engine) since these re-
ources can be assumed to be available in most enterprise in-
rastructures or cloud services, where such small configurations
re usually offered for free. Further, a reasonable buffer should be
lanned for both metrics, in order to be prepared for extensions
nd peak traffic situations.
E-mail services usually do not work in real-time, therefore

igh performance is not extremely crucial in our application
ompared to other services. On the other hand, long delays could
ead to limited scalability. The additional processing of e-mails
y the tracking prevention system will inevitably cause some
elay in e-mail delivery. We suggest a maximum threshold of
ive minutes for practicability reasons. The system should keep
he average delay in the range of seconds, but under no circum-
tances exceed the five-minute threshold. Regarding scalability,
he framework should be able to cope with at least 20 concurrent
onnections. Achieving such a degree of scalability qualifies the
ramework for enterprise applications, while the explicitly low
esource requirements allow the system to be run and scaled up
n free popular Platform-as-a-Service providers.

. Design & development

Designing a protection solution as shown in the lower panel
f Fig. 2 requires several steps. First, the tracking prevention
pproach needs to be defined. Second, high-level realization de-
isions need to be taken. Third, necessary decisions regarding
rchitecture and implementation need to be taken.

.1. Prevention concept

We base on Bender et al. [15] and consider the concept of
elective blocking to be most suitable for combining systematic
racking prevention with good user experience (see requirement
). The selective blocking approach follows the identify and block
dea. All referenced external images in a mail need to be clas-
ified as either being tracking or non-tracking images. While
on-tracking images remain, tracking images are either deleted
r replaced to preserve the e-mail format.
4

4.2. High-level design

To provide the functionality of the selective blocking approach,
the combination of tracking detection and e-mail modification
is required. Providing this functionality can be realized on the
client-side as well as on a server. While server- and client-based
approaches share characteristics, many differences exist that are
to be considered when designing a tracking prevention software
solution. Table 2 gives an overview of criteria that distinguish the
two paradigms to decide for the more suitable one with regard to
our solution objectives.

The server-based solution is installed on the mail server and
therefore tightly integrated with the central point of mail recep-
tion. Concerning the first requirement, neither client-side solu-
tions nor server-based approaches provide sufficient protection.
While server-based solutions do not yet exist, different studies re-
vealed client-side solution to not provide sufficient protection [4,
15]. Concerning the detection engine (requirement 2,3,4) related
requirements can be realized in both approaches. Considering
the quality of protection, the server-based approach can profit
from receiving similar mails. Tracking mechanisms can be identi-
fied by analyzing differences between similar mails as tracking
approaches require uniqueness identification of e-mail recipi-
ents [5]. Therefore, slight advantages exist for the server-based
solution. Concerning the necessary performance and scalabil-
ity (requirement 5), central server resources are assumed to be
more powerful, than local client-side devices. However, modern
devices are assumed to provide necessary resources. Since the
relevant functionality in bundled on the server-side, the solution
is client independent. Modifications and specialized functionality
are not required on the front-end (client) side. On the contrary,
the client-side solution requires each device and mail client to
realize the detection and modification procedures (requirement
6). If at least one mail client does not realize this, protection
is insufficient. Considering the many different mail clients, plat-
forms, and devices, the client-based approach requires extensive
development and setup efforts compared to the server-based
solution.

Summing up, the server-based approach fulfills the require-
ments and demands to a greater extent, especially in the pro-
fessional context, as enterprise-infrastructures involve centrally
managed mail infrastructures. We therefore focus on a server-
based solution in the realization.

4.3. Software specification

For ensuring the high-quality demands of such complex soft-
ware, a well-founded engineering process was applied to opera-
tionalize the design and development phase of the design science
research process. A model that matched the nature of the task
is the Rapid Application Development Model by Martin [46]. Its
development lifecycle is designed to enable faster development
and higher quality results than traditional process models [47].

General architecture
In correspondence with recent trends and the requirement

for scalability in enterprise software development, we design
our framework as a flexible micro-service architecture [48]. The
process and data flow are shown in Fig. 4. A detailed description
is provided in the subsequent sections.

A system consisting of separate services brings about addi-
tional challenges for communication and security. Use of the
Docker platform [49] and its container-based system support
the objectives of universality, user-friendliness, flexibility, and
plugin architecture on a system level. Docker also provides a local
network that can be used for communication between running
containers (Fig. 5).



B. Fabian, B. Bender, B. Hesseldieck et al. Information Systems 97 (2021) 101702

o
b
a
m
e
i
t

Table 1
System requirements.
ID Requirement Rationale Category

1 Selective blocking Selective blocking of tracking images is identified as the most
suitable approach that also preserves usability [15]

Concept

2 Accuracy The accuracy of the detection engine determines the
effectiveness of the entire system [15]. Depending on
misclassification, different effects may occur (false
positives/false negatives) [12].

Algorithm

3 Universality The detection performance needs to be stable over different
mails senders and also over time; the system needs to
recognize new forms of tracking [12].

Algorithm

4 Modularity System components should modular, in particular easily
adaptable to newer versions [12,15] or alternative algorithms.

Architecture

5 Scalability Scalable performance of the entire system is required in order
to be employed practically [15]

Architecture

6 Coverage of
heterogeneous endpoints

The system needs to cover heterogeneous endpoints and
e-mail clients in use [4].

Architecture
Table 2
Comparison of client- and server-side approaches.
Evaluation criteria Requirement Server-side solution Client-side solutions

Sufficient solution available? 1 No (not available at all) Not sufficient [4,15]

Detection engine 2,3,4 Similar quality in both approaches possible, modularization in both approaches possible; central
solution allows for improved detection through similar mails in multiple inboxes.

Performance 5 Central, powerful server resources available;
however, due to heavy traffic scalability
is important.

Local, sometimes mobile use-cases require
energy-efficient solutions; modern
technology platform should provide
necessary resources.

Completeness of protection

6

Yes, e-mail server is central incoming point for
messages.

Only if supported and active on all clients
prior to receiving and opening mails.

Necessary setup Once, no user-configuration effort For each single endpoint, i.e., mail client.

Multi-platform support Not required Required
Fig. 4. Process and Data Flow.
An advantage of this software design is that the services are
nly loosely coupled through a communication protocol and can
e easily replaced. Further advantages of the decomposition of
n application into services are high system modularity, treat-
ent of services as black-boxes, which makes the application
asier to understand, and allows parallelized development, which
s of special importance for large applications with multiple
eams.
5

4.4. Technological building blocks

Node.js is a cross-platform JavaScript (JS) runtime-
environment that can execute JavaScript code on the server. It
was chosen for this project due to multiple reasons. First, it
comes along with an active and big ecosystem that provides a
lot of libraries and frameworks for uncommon issues. Second, it
prevents a possible bottleneck (connecting to the detection en-
gine) through its asynchronous I/O ability. Third, it is lightweight



B. Fabian, B. Bender, B. Hesseldieck et al. Information Systems 97 (2021) 101702

a
s
s
k
p
t
r
w
l

S
b
w
i
o
t
s
I
g
S
f
s

t
R
s
a
r
a
i
b
o
u
m
e
w
p
d
a

s
e
o
h
s
c
k
L
t

Fig. 5. Detailed Architecture, with Load-Balancing of the Detection Engine.

nd runs on low resources, but is still very performant and
calable at the same time. Fourth, it considers possible open
ource contributions, since JavaScript and Node.js are widely
nown technologies with a large developer pool. Based on the
roject’s objectives and requirements, one can see that especially
he technical requirements like scalability, performance, and low
esource usage could be met by utilizing Node.js. Version 8.6.0
as used for development, but compatibility with updates for the

ong-term supported version 8 is ensured.
Haraka is an open source Simple Mail Transfer Protocol (SMTP)

erver written in JavaScript using the Node.js platform. It is
uilt as plugin architecture around a very lightweight SMTP core,
hich provides software engineers to hook into the mail process-

ng. This flexible architecture paired with the event-driven access
n the SMTP processing, grants developers all options to shape
he server’s behavior for their needs. Haraka is selected for this
oftware framework due to ideally matching the requirements.
t has high performance, allows customized behavior, has a plu-
in architecture from the base on, supports hook-ins into the
MTP processing, developer friendly, comes along with security
eatures, and foremost is it not bound to any particular e-mail
ervice provider.
R is a widely established open source framework for statis-

ical calculations and machine learning. Together with Python,
can be seen as a standard platform for contemporary data

cience. While some studies criticize R for bad memory man-
gement [50], a completely rewritten version of the R core was
ecently provided by Microsoft (Microsoft R Open) aiming to
ddress such concerns. Therefore, we acknowledge that several
nteresting alternatives for implementing the machine-learning-
ased detection engine exist and continue to emerge in the form
f new programming languages for data science applications or
ser-friendly graphical machine-learning platforms which auto-
atically generate deployment code. With these future consid-
rations in mind, we realize the detection engine as a plugin,
hich communicates with the e-mail server via HTTP using the
ackage jug. The plug-in design makes it easy to replace the
etection engine, which we currently implement in R, with some
lternative technology upon need.
Docker is open source software that virtualizes an operating

ystem (OS) for cloud applications, which are running in contain-
rs and are therefore isolated from the actual OS and from each
ther. It provides a lightweight layer of abstraction between the
ost OS and the containers, which enables certain functionalities
uch as setup automation and a separate local network for the
ontainers. Docker utilizes resource isolation features of the Linux
ernel to allow independent containers to be executed in a single
inux instance. This avoids the overhead of starting and main-

aining a virtual machine [51]. Docker-compose is a feature of the

6

Docker platform that allows defining and running multi-container
applications. It performs the configuration, creation, and start-
up process for all of the application’s containers with a single
command. The convenience of Docker leads to a high adoption
in the software industry [51,52].

Docker was chosen for the framework due to the alignment of
its features with the objectives and requirements. Especially its
plugin-oriented architecture, flexibility, universality, user-
friendliness, maintainability, extensibility, scalability, and secu-
rity demands made Docker the platform of choice. The desired
plugin architecture is supported through the container system as
well as extensibility and scalability, flexibility and universality
are given because Docker runs on every Linux-based OS and
Windows. Security is enhanced since Docker-compose provides
an internal network for containers to communicate. Only the con-
tainer running the e-mail server is exposed to the Internet, while
the containers with the detection engines are not. Therefore,
researchers and developers not have to consider network security
when creating new detection engines. With a one command setup
and start the whole application ecosystem and providing scaling
out of the box, boosts user experience and adoption potential of
the framework.

4.5. Data flow

Fig. 1 shows the top-level data flow in the framework. It
starts with the sender sending an e-mail, which is routed via an
e-mail server that implements our software. The Haraka SMTP
server registers the incoming mail and executes authentication
checks; if they pass, it starts receiving the e-mail. After all data
is received, an event is emitted and the customized tracking
prevention plugin ‘‘hooks’’ into the processing of the e-mail. As
a first step, the body and the headers of the e-mail are parsed
and handed over to the e-mail extractor function. This obtains
the images with all their attributes from the large HTML-string,
and prepares the headers to be passed along with the images to
the detection engine.

Then, the mail extractor derives additional data and returns an
array consisting of all images of the e-mail. The returned array is
handed over to the communication module that sends the image
objects to the detection engine. The mail server is not blocked
while the detection engine processes the images. Consequently,
the plugin can process the next e-mail until the response from
the detection engine arrives.

When the answer containing all tracking images arrives, their
source needs to be replaced in the e-mail body. Since the body
of the e-mail is a large HTML-string, regular expressions (regex)
can be applied. If a matching string is found, it is replaced by a
new image source. Finally, the e-mail body is replaced with the
tracking-free version and the e-mail is forwarded to its recipient.

Executing all of these steps without intermediary checks could
be wasting computing power and makes the system more error
prone. For example, if an e-mail does not contain any images, it
should not run through the whole process, but rather be directly
passed to the mail forwarding function. The same holds if the
detection engine did not find any tracking images. Fig. 6 displays
the corresponding control flow of our software as UML activity
diagram.

Analyzing a software system based on time, communication
and execution provides an important perspective for a deeper
understanding. In Fig. 7, the sequential execution and commu-
nication of the framework is shown using UML. Stick arrowheads
represent asynchronous messages, and the triangle head stand for
synchronous messages.

In the diagram, the process of the framework is started when
an e-mail arrives. As a first step, the mail extractor module is



B. Fabian, B. Bender, B. Hesseldieck et al. Information Systems 97 (2021) 101702

c
t
i
t
e
s
w
f

4

t
e

Fig. 6. UML Activity Diagram of the Software Framework.

alled with the e-mail body and headers as arguments. After
he function returns, it is checked whether the e-mail contained
mages, which are then passed via the communication module
o the detection engine. When the response from the detection
ngine arrives, it is checked if tracking images were detected. If
o, the tracking images’ sources are replaced with the link to a
arning image. After completing the replacement, the e-mail is

orwarded to the actual recipient’s inbox.

.6. Detection engine

We build the detection engine on a machine learning classifier
hat identifies individual tracking images based on input features

xtracted from the email code [12]. The features are calculated

7

from the HTML code, since loading the images is prohibited by
the application, and fall into two groups. First, we capture the
formatting of the image reference URL, since tracking image ref-
erences typically show patterns of being generated and managed
automatically. Indicators of these patterns are, for example, the
file format or calculating statistics on the length, number of
folders and changes between letters and numbers. Second, we
relate each image to the other images within the same email,
since separation of tracking and content management infrastruc-
ture manifests itself in distinct patterns within the URL. Tracking
image links are accordingly served from different domains or
have different folder structures or file formats than, for example,
advertising content within the same email. All features are se-
lected to be resilient against active manipulation by the tracker,
which disqualifies absolute image size and keyword matching
used in previous studies.

The detection engine is set up as a combination of the feature
extraction module and any state-of-the-art classifier module to
allow convenient updating of features and the classifier over time.
For this study, we evaluated a logistic regression and a random
forest model [53] on classification accuracy and execution time to
identify the binary classifier that is best suited to classify images
as ‘‘tracking’’ or ‘‘non-tracking’’ based on the proposed features.
The available data consists of newsletter emails collected from
300 companies in a 20-month period from 2015 to 2017 in a con-
trolled experiment and contains 794,519 external images within
23,602 unique emails. We tune the detection models using five-
fold cross validation on a training set of emails from a 5-month
period in 2015. To ensure robust performance of the classifiers
out of sample, we evaluate the classifiers on 30 randomly selected
companies, whose emails were excluded from the training data.
To further ensure robust performance over time, we include only
emails received after the training data in a 15-month period from
Nov 2015 to Jan 2017. We repeat the sampling and model training
process ten times and report the average results over all company
samples.

The proposed selective prevention system is intended to block
only specific tracking images rather than all images in an email
in order to inhibit the user experience as little as possible, while

ensuring a maximum level of user privacy. However, the implicit
Fig. 7. UML Sequence Diagram of the Software Framework.



B. Fabian, B. Bender, B. Hesseldieck et al. Information Systems 97 (2021) 101702

T
A

a
c
a
u
o
r
t
t
t
m
p

4

s
t
N
t
w
h
t

e
l
T
s
T
m
r
i
c
s
r
d
d

t
a

able 3
ccuracy measures of classification models for tracking image detection.

Sensitivity Specificity AUC

Blacklist 0.29 0.98 0.637
Logistic regression 0.98 0.72 0.972
Random forest 0.92 0.98 0.994

cost of failing to block a tracking image and allowing a breach
in user privacy is higher than falsely blocking content images
and impeding readability. We tune the probability threshold (for
each classifier individually) on the training data set to account for
the cost imbalance and assess the performance of the classifier
in terms of the sensitivity and specificity, i.e., the percentage
of tracking and non-tracking images that are correctly classi-
fied, respectively. For the empirical evaluation, we identify the
probability threshold to be the value that maximizes the speci-
ficity of a classifier at a fixed sensitivity of at least 99.99% on
the training data, based on the believe that many users have
a strong preference for privacy. Future implementations could
consider the sensitivity/specificity tradeoff as a user choice and
set the threshold accordingly. Having fixed the sensitivity of each
classifier on the training data, we compare detection engines
w.r.t the mean sensitivity and specificity over the ten test sets
described above and report the area-under-the-ROC-curve (AUC)
for completeness (Table 3).

We observe that both statistical learning models outperform
blacklist approach based on known tracking providers and

onclude that logistic regression and random forest are effective
t detecting tracking images in a real-world setting. Regarding
ser experience, the logistic regression correctly classifies 76%
f non-tracking images, while the random forest classifier cor-
ectly identifies over 99% of non-tracking images and thus leaving
he email content completely intact for most emails. We adopt
he random forest in our current implementation of the detec-
ion engine and stress its comparability to other state-of-the-art
achine learning classifiers in terms of model complexity and
rediction delay.

.7. Scalability

Using Node.js as the underlying technology of the e-mail
erver provides good scalability. However, Node.js is a single
hreaded technology, which imposes certain restrictions. The
ode.js community found a remedy in building a native clus-
er solution, where an orchestrating master process is spawned
ith the potential of starting as many workers as the system
as central processing units (CPU). Haraka inherits this cluster
echnology.

The detection engine is a service that should be scaled when
xperiencing heavy load. To ensure proper usage of resources, a
oad balancer is placed before the detection engine containers.
he load balancer distributes incoming messages from the e-mail
erver according to the free capacity of the detection engines.
his mechanism keeps response rates of the complete system to a
inimum and allows it to even handle huge amounts of traffic. If

equired, also the e-mail server can be multiplied. Recommended
s to also place a load balancer in front of the e-mail server
ontainers when scaling. Another feature of the system is that any
caling can be executed on startup, or even when the system is
unning, with one simple command (docker-compose up –scale
etectionengine=2). This command starts the system with two
etection engine containers as shown in Fig. 2.
In summary, the system provides all required functionalities

o serve on a large scale. Due to this fact, enterprise-grade usage
nd ease of use are supported.
8

5. Demonstration and evaluation

5.1. End-user perspective

For demonstration, an excerpt of a real-world e-mail is shown
in Fig. 8, an HTML newsletter from an online education platform.
Its content contained tracking images that were filtered by our
application.

One larger tracking image (a logo) as well as a tiny tracking
pixel (at the lower left end of the e-mail) are detected. The
red warning sign in Fig. 8 demonstrates how a tracking image
is replaced from an end user’s perspective. It also illustrates
that styling of mail content remains intact. Using this technique
retains user experience in contrast to the intrusive approach of
preventing all image downloads.

5.2. Software complexity

An analysis of the software’s complexity clarifies how effi-
ciently an algorithm or piece of code operates, which is important
in practice when system operations are time or resource critical.
Accordingly, the algorithm’s CPU (time) usage, memory usage,
disk usage, and network usage should be taken into account. Disk
and network complexities are negligible for the framework be-
cause network traffic is limited to sending from the mail server to
the detection engine and back and no disk usage is implemented.

The e-mail server executes the image extraction, sending to
the detection engine, and replacing of tracking images’ sources.
Sending the images is constant in its time complexity and linear
in space complexity because the memory required depends on
the amount of images in the mail body, but it has no influence
on the amount of messages to be send. The mail extractor is
a more complex piece of software. It needs to iterate over the
HTML string to extract the images and iterate over the image
objects multiple times to destruct styling, calculate similarities
etc. Clearly, a decision had to be made to either keep space
complexity low at the expense of time complexity or vice versa.
Due to e-mail not being a time-critical service, the first option
was selected so quadratic time complexity was introduced in
order to achieve a logarithmic space complexity. An advantage is
that the objective of running on low resources can be met even in
high load situations. Delay would increase, but the memory used
will stay more or less the same.

In pre-studies, we established that the detection engine is
able to classify images with high speed, though there is room
for performance improvements, as the experimental section will
show. More time is needed for the training of the machine learn-
ing models. However, this can be conducted offline and new
models can be rolled out to the detection engine in a production
environment at regular intervals.

The last operation is the replacement of tracked links in the
images’ sources. Through utilizing a regular expression, a linear
time complexity with a constant space complexity is achieved.
Linear time complexity results from iterating over the HTML-
string just once and constant space because the pattern as well
as the replacement is stored as string. Other options would have
introduced a lot of complexity to the code and probably achieved
a worse result.

Overall, the complexity assessment also shows that the appli-
cation is more sensitive to a large number of images in the e-mail
body than to heavy traffic. But if the system is under heavy load
with mails containing loads of images, the system will just slow
down due to time complexity issues but will not break because
of exceeding memory space.



B. Fabian, B. Bender, B. Hesseldieck et al. Information Systems 97 (2021) 101702

5

o
a
k
t

A
7
t
o
p
t
b
t
s

c
D
t
o
w
t
n
A
c
a
k
p
o

r
C
d

h
r
S
p
t

s
a
t
a
s

o
q
t

Fig. 8. Tracking Image Replacement.
.3. Performance experiments

Conducting performance experiments is an essential measure
f the framework’s suitability for production. For application in
n enterprise environment, the responsible engineer needs to
now how many instances and resources are needed to handle
he traffic of the company.

The tests are operated using the Apache JMeter tool on an
pple MacBook Pro Mid 2017 with a 3.3 GHz Intel Core i5 (i5-
287U) and 16 GB 2133 MHz LPDDR3 RAM. Setup and running
he software framework was conducted using Docker. Testing
n a laptop and not a dedicated production machine serves as
erformance baseline. Focus is put on the analysis of multiple
est settings to simulate real traffic and to inspect performance
ehavior for different variables. Scaling scenarios are realized
hrough putting heavy load with a real traffic simulation on the
ystem.
First, the response times of the system are analyzed for the

ombination of feature extraction plus a random forest classifier.
ifferent e-mail contents are mixed to monitor behavior towards
he number of images since the complexity analysis in the previ-
us section indicated sensitivity towards this variable. Three tests
ere developed, real traffic simulation, meaning a mixture of one,
wenty, and no images in the mail content. Secondly, one and
o image mails mixed and finally, twenty and no images mixed.
ll tests were executed with a different amount of concurrent
onnections ranging from 2 to 40. Thereby, the test tool opens
new connection whenever another one has closed in order to
eep a constant amount of connections open. For the first test
lan, the framework was running on one container per service:
ne mail server and one detection engine.
The results show a nearly linear relationship between concur-

ent connections and average response time in all tests (Fig. 9).
omparing numbers, the average response time approximately
oubles if the amount of concurrent connections doubles.
This result is very promising and indicates that the system

as not reached its limits yet, since no exponential growth of
esponse time was observable. Being able to handle 40 concurrent
MTP-connections with ten seconds delay on average already
roves the framework to be suitable for midsize companies with
his single instance setup.

Furthermore, it has to be mentioned that during all tests the
ystem had an 1.5 to 2.0 e-mail throughput rate per second. Speed
lone is not the only important indicator for the framework; also
he error rate has to be considered. As previously noted, Node.js
nd Haraka become slower, but are not generating errors. This is
upported through the tests by achieving a 0.00% error rate.
In the previous section, it was estimated that the number

f images in the e-mail body impacts delivery delay due to a
uadratic time complexity, which is confirmed by Fig. 9. It shows
hat the test with just one image has the lowest average response
9

Fig. 9. Average Response Times on a Single Instance with Mixed Traffic (in
Milliseconds).

Fig. 10. CPU Usage During Experiments (in Percent).

time, while the test with twenty images resulted in the high-
est. Real traffic simulation is situated in between, which meets
the expectation since the test sent twenty, one, and no image-
containing e-mails. Ultimately, it is clear that the framework’s
performance is strongly influenced by the number of images in
the e-mails it is processing.

Monitoring system resources is important to check if the low
resource objective is fulfilled by the system. During test exe-
cution the system metrics were measured and resulted in the
data shown in Figs. 10 and 11. Fig. 11 clearly reveals the CPU
distribution between server and detection engine. Depending on
the task, the usage share is flexibly distributed; when more cycles



B. Fabian, B. Bender, B. Hesseldieck et al. Information Systems 97 (2021) 101702

m
s
t

w
w
t
t
n
o
t
s
e
T
n
t
o

s
i
c
e
w
s
h
n
u
i

a
s
h
d
r

d
c
o

f
a
f
r
M
c
t

t
s
t
s
s
o
t
t

t
r
t
c
H
i
a
P
a
m

e
H
o
m

Fig. 11. Memory Usage During Experiments (in Megabytes).

are needed for the detection engine the mail server lowers its
share. It is observable that the CPU is not fully claimed on three
concurrent connections. An interesting difference exists between
20 concurrent connections with real traffic and 20 concurrent
connections with a higher image load. Recalling the faster re-
sponse times of the real traffic simulation from Fig. 9, this can be
explained through allocation of more CPU resources to the mail
server, whereas the detection engine required more CPU power
on higher image load, leading to slower response times.

Fig. 11 supports this argument; the detection engine required
ore memory during high image loads and keeping the mail
erver’s memory stable at 76 MB. Accordingly, the image sensi-
ivity issue is backed through the system monitoring metrics.

In addition to the image traffic tests, a standard load test
as performed to measure the general behavior of the frame-
ork when handling e-mails without images. The measured sys-
em metrics support the complexity analysis. When exposing
he framework to the enormous amount of 400 concurrent con-
ections, it reacts by using a lot of CPU cycles, but stays low
n memory resources. So, the framework behaves exactly how
he complexity analysis predicted. In this heavy load test the
oftware artifact achieved a 7.6 s average response time, 0.00%
rrors, and an impressive throughput of 45.24 e-mails per second.
hese numbers show the performance of the framework when
ot having to handle image detection. One has to remember that
hese numbers were achieved running just one e-mail server- and
ne detection engine container.
When switching from one instance per service to multiple

ervice containers, at first the bottleneck service needs to be
dentified. Looking at the previous results, it is straightforward to
onclude that the framework can be just as fast as the detection
ngine. So, there is one issue in service-oriented systems: the
hole is just as fast as its slowest part. Having loosely coupled
ervices allows simply multiplying service instances to achieve
orizontal scaling. This mechanic mitigates problems of bottle-
eck services. As a consequence, the detection engine was scaled
p to two and four instances, and the test load was further
ncreased through more concurrent connections.

Analysis of Fig. 12 reveals that the framework’s response times
re growing as a polynomial, but the effect is moderated for the
caled instances. Linear behavior as in Fig. 9 can be also observed
ere. Response times are linearly correlated with the number of
etection engine instances and therefore increase with a smaller
atio. This behavior was expected.

What was unexpected, however, is the fact that the single
etection engine system still manages to handle 480 concurrent
onnections with growing just to an average response time of
ne minute and forty seconds, which is yet an acceptable speed
10
Fig. 12. Average Response Times on Scaling, Simulating Real Traffic (in
Milliseconds).

Fig. 13. E-Mail Throughput per Second, Simulating Real Traffic.

or asynchronous e-mail. Again, there were no errors returned for
ny request in the tests and even the result of the single instance
ramework was far away from typical sender SMTP timeouts that
ange between two to ten minutes (Braden [54], Section 5.3.2).
ultiple detection engine instances provide no advantage for few
oncurrent connections, especially when put into context with
he increased resource usage.

On the other hand, the horizontal scaling shows its true po-
ential when having heavy concurrent traffic. For example, the
ystem with four detection engines at 480 concurrent requests
akes as long as the single system takes for 120 or the doubled
ystem for 240. The slightly higher response time average of the
caled framework with four detection engine instances probably
riginates from the e-mail server stressing to handle 480 connec-
ions at a time. Delay caused by the load balancer is negligible and
hus can be excluded as a cause.

From Fig. 13, it is directly recognizable that scaling increases
he e-mail throughput. Again, a linear relationship between the
esults for each system is recognizable. However, the shapes of
he lines reveal an increasing slope from 20 to 240 concurrent
onnections, but a decrease in growth rate from 240 onwards.
aving eliminated the detection engine bottleneck through scal-
ng, this implies that the e-mail server is approaching its limits
nd has already a restricting impact at 480 concurrent mails.
roblems with reaching the e-mail server’s limits can be easily
lleviated through placing another load balancer in front of it and
ultiplying mail server instances.
For an extreme use case, a company might handle 20 million

-mails a day, which are 230 mails per second [55]. A single
araka instance can handle more than 45 mails per second with-
ut extraction; with extracting images, 19 mails per second were
easured. To provide a buffer, we assume a throughput of 15



B. Fabian, B. Bender, B. Hesseldieck et al. Information Systems 97 (2021) 101702

m
c
f
p
i
t
S
b
e
t
d
m
t

m
e
t
T
i

f
l
c
t
f
a
r

t
i
c
e

5

p
q

ails per second. Then it would require just 16 e-mail server
ontainers to handle the full traffic of that company. Assuming
urther linear behavior, it requires 10 detection engine instances
er Haraka instance. In total it would require 16 e-mail server
nstances with 160 detection engine instances to filter and route
he complete e-mail traffic of the company at reasonable speed.
lightly over-scaling provides enough buffers for peak traffic,
ut still the service would just need more time but not throw
rrors when being overloaded. Having a 1:10 ratio of mail server
o detection engines recommends future improvement of the
etection engine’s performance. Also, the 16 Haraka instances
ight be scaled down through separating the mail extractor from

he server to a dedicated service.
Regarding the replacement of links, the regular expression

ethod is commonly seen as one of the fastest methods. How-
ver, it can be discussed if the replacing should be executed on
he server or rather also be handled via its own micro-service.
hese two measures could cut the number of required mail server
nstances by half.

Evolving to a full micro-service system would be beneficial
or scalability but would also add complexity on the service
evel. Then, HTTP may be replaced by using web sockets since
ommunication frequency would increase and this switch of pro-
ocols could reduce overhead. This approximation shows that the
ramework is prepared for extremely large-scale enterprise usage,
lthough the detection engine would require improvements to
educe the required number of instances.

Finally, it can be concluded that all defined objectives and
echnical requirements are fulfilled. Especially the limits of max-
mum five minutes e-mail delay, handling more than 20 con-
urrent connections with less than 250 MB memory usage, was
xceedingly satisfied.

.4. Static code quality

Code quality usually does not affect the execution of the
rogram but does greatly affect its further development. Code
uality analysis was executed through using the JetBrains Web-

storm JavaScript IDE and the ESLint plugin. Results of the static
code analysis indicate a high code quality level and application
of conventions and best practices as well as utilization of a
proper code style. This high standard is also expected by the open
source community in order to attract contributors for further
development.

5.5. Evaluation against objectives

As part of the Design Science Research Method, this section
evaluated the solution against the defined objectives. This section
integrates the different aspects in an overall assessment. Table 4
lists the requirements as well as their evaluation in the software
prototype. Concerning the first requirement, the design solu-
tion fulfills the approach of selective blocking by implementing
an identify and block strategy for tracking images. Concerning
the detection algorithm (requirements 2 and 3), the software
solution relies on previously developed and tested algorithms
for detection [12]. However, given the modular architecture of
the solution, the detection engine can be easily updated or ex-
changed, which fulfills the fourth requirement. Concerning the
performance and scalability of the solution (requirement 5), dif-
ferent tests were reported before that reveal the solution to fulfill
typical enterprise-related performance requirements. Finally, the
solution is realized using a central approach at the incoming
mail server (central solution) which makes the detection and
prevention independent from the individual endpoint to cover all

potential mail access clients (requirement 6).

11
In summary, the solution fulfills all the requirements set to
an appropriate extent. The software is suitable to protect e-
mail recipients against current image tracking approaches in an
enterprise context.

6. Discussion

Previous empirical findings, for example that around 92% of all
e-mail openings of commercial newsletters might be unprotected
against tracking [15], indicate the scope of the privacy problem
and motivate our research. Concerning the differentiation to other
existing protection services against e-mail tracking, there are a
few other services that broadly address the same issue, but al-
ways with problems; either dependency on a specific browser or
a very complicated procedure to setup the service. Summarizing,
earlier privacy solutions either lack user friendliness, precision or
independency.

In general, it should be questioned why the user should be
responsible for making his own e-mail inbox tracking free, and
why the service provider is not offering better privacy protection.
Furthermore, companies might want to protect their employees’
work e-mail addresses from tracking. A simple browser or inbox
plugin could also be attractive to end-users, but it would always
come along with a dependency on a third-party application. Our
goal was to remain independent and let many users benefit if a
mail service implements our framework.

The motivation of this study was to create an enterprise-grade
framework that fills the identified gap in the field of privacy-
enhancing technologies. Recalling the evaluation section, it can be
clearly said that the framework fulfills these criteria. The frame-
work is ready and suitable to be applied in actual production
conditions. Metrics from the evaluation sections show that this is
achieved through right choices regarding technologies and a solid
software design. The ability to handle more than 400 concurrent
connections with reasonable response times on low resources and
with a 0% error rate proves the framework’s quality.

However, meeting an end-user demand is not the only pur-
pose of this software. It was also built to provide a basis for
further research in the field of e-mail tracking. The platform aims
to be used by researchers to test new detection engines, gather
data about the problem itself, and to serve as a real-world test
environment. Additionally, the selective filtering approach was
demonstrated as valid through implementation in a real appli-
cation. This framework augments the research field by a practical
and extensible system to support investigations of any direction.

Concerning limitations, there are aspects that would also have
supported the decision in favor of monolithic application archi-
tecture. However, monolithic designs are known for their strug-
gles with scaling. Although the architecture would provide an
environment for easier logging and features such as shared mem-
ory, these advantages do not outweigh the benefits of a micro-
service architecture. As tracking being a rapid evolving domain,
the flexibility of micro-services allows exchanging parts without
the need to redesign the whole solution, which fosters further
development.

A similar, but contrary argument could go even further in
the direction of micro-services. A further decoupling of the mail
extraction and the replacing would free resources on the mail
server. On the other hand, this would lead to higher commu-
nication traffic in the local network and thus would the HTTP
overhead be higher. Another point against it is that there are fixed
resources required by every container such as a runtime environ-
ment and libraries as well as a new load balancer if multiplication
is planned. For upcoming refactoring iterations, decoupling of
both operations into separate services may be considered.

For a detection engine that has to handle heavy traffic, needs
to process HTTP, and should run on limited resources, R might be



B. Fabian, B. Bender, B. Hesseldieck et al. Information Systems 97 (2021) 101702

b
i
t
r
f

t
i
t
u
d
a
n
e
t

o
i
p
b

b
a
w
i
a
f
r

s
u
s
d

7

l
i
i
m
t
w
c
i

Table 4
Requirement-based software evaluation.
ID Requirement Category Realization/Evaluation

1 Selective blocking Concept Selective blocking is realized by the solution.

2 Accuracy Algorithm Very accurate detection algorithms are used in the
detection engine (Section 4.6; [12]).

3 Universality Algorithm Detection engine can classify unknown e-mails (Section
4.6), from different senders and at a different time [12].

4 Modularity Architecture Modular software architecture allows to exchange
detection components.

5 Scalability Architecture Software tests demonstrated reasonable performance and
scalability of the system.

6 Coverage of heterogeneous endpoints Architecture Central e-mail server (proxy) allows for endpoint coverage
irrespectively of e-mail client.
a suboptimal choice. Consequently, future detection engine de-
velopment could further improve execution speed, complexities,
and resource usage. In the field of machine learning, there are
alternatives such as Python or Julia, which are also popular and
proven in large-scale applications.

Yet another aspect concerns the discussion if JavaScript should
e used in use cases such as e-mail. The community is divided
n that point. If technologies emerge that offer better advantages
han Node.js, then a mail server re-implementation could be
ecommended. For now, it was considered the most efficient
ramework to develop the artifact.

Concerning future research, the implementation of the detec-
ion engine could be improved in order to even better meet the
dentified requirements of the framework. It would be interesting
o know if there is a more efficient method than the currently
sed one or even a possibility to split the detection engine into
ifferent tasks with certain checkpoints. There could also be
n extension of the detection engine and the mail extractor to
ot only check for tracking images, but tracking links in gen-
ral. Though links involve fewer risks, users may be clicking on
racking links by accident.

A further next step would be the enterprise-grade application
f the framework. Gathering data about the framework’s behavior
n a non-experimental setting would contribute to future im-
rovements. Real usage data has also a positive effect on adoption
y the open source community.
An extension that would foster future privacy research would

e the implementation of a proper logging engine for tracking
ttempts and a sophisticated analytics tool. These two features
ould be of high value for quantitative research in e-mail track-

ng. Metrics such as the tracking images’ domains and other char-
cteristics would become analyzable. Also, the resulting database
rom these two services would be beneficial to the general e-mail
esearch community.

To foster application and future research, we publish the
ource code of our framework in an open repository GitHub
nder an open source license [13]. Together with this article, this
upports communication, the final step in the formal process of
esign science research [14].

. Conclusion

Tracking methods, such as web and e-mail tracking, are popu-
ar marketing tools. Data derived from tracking provides valuable
nformation regarding a person’s interests and reception behav-
or. Modern e-mail tracking methods allow the sender to deter-
ine how often an e-mail was opened, the device used to read

he e-mail, which links were clicked, and the location and time
hen the recipient opened an e-mail. While different aspects
oncerning e-mail tracking have been studied in isolation, a study

ntegrating former efforts in a ready to use countermeasure is still

12
missing. This contribution addresses this gap, by conceptualizing
and implementing a novel protection framework against e-mail
tracking.

Following the Design Science Research Method, we developed
a software being capable to identify tracking images in e-mails
via machine learning with very high accuracy and can selectively
replace them so that an untracked e-mail is provided for the end
user without any manual effort. Our mail protection framework is
an enterprise-grade software, flexibly extensible, highly scalable,
and ready to be applied in actual production conditions. The ex-
perimental evaluation section shows that this is achieved through
corresponding choices regarding technologies and the creation of
a solid and flexible software design.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] A. Goldfarb, C. Tucker, Privacy and innovation, Innov. Policy Econ. 12 (1)
(2012) 65–90.

[2] T. Ermakova, A. Hohensee, I. Orlamünde, B. Fabian, Privacy-invading
mechanisms in E-commerce – A case study on german tourism websites,
Int. J. Netw. Virtual Organ. 20 (2) (2019).

[3] T. Ridley-Siegert, DMA insight: consumer email tracking report 2015, J.
Direct Data Digit. Mark. Pract. 17 (3) (2016) 163–169.

[4] S. Englehardt, J. Han, A. Narayanan, I never signed up for this! Privacy
implications of email tracking, Proc. Priv. Enhanc. Technol. 2018 (1) (2018)
109–126.

[5] B. Fabian, B. Bender, L. Weimann, E-mail tracking in online marketing
- Methods, detection, and usage, in: Paper Presented at the 12. In-
ternationale Tagung Wirtschaftsinformatik (Wirtschaftsinformatik 2015),
Osnabrück, 2015.

[6] T.-C. Li, H. Hang, M. Faloutsos, P. Efstathopoulos, TrackAdvisor: Taking
back browsing privacy from third-party trackers, in: J. Mirkovic, Y. Liu
(Eds.), Passive and Active Measurement, vol. 8995, Springer International
Publishing, 2015, pp. 277–289.

[7] L. Vaas, M. Stockley, How emails can be used to track your location and
how to stop it, 2014, Retrieved from https://nakedsecurity.sophos.com/
2014/02/27/how-emails-can-be-used-to-track-your-location-and-how-
to-stop-it/.

[8] S. Yu, Crime hidden in email spam, in: Encyclopedia of Criminal Activities
and the Deep Web, IGI Global, 2020, pp. 851–863.

[9] A. Dabrowski, G. Merzdovnik, J. Ullrich, G. Sendera, E. Weippl, Measuring
cookies and web privacy in a post-GDPR world, in: Paper Presented at the
Passive and Active Measurement, Cham, 2019.

[10] B. de Roos, The Implementation of Privacy Regulation: Predictors of the
Discrepancy Between Attitude and Behavior of Organizations (Master the-
sis), Open Universiteit, Faculteit Management, Science & Technology, 2020,
Retrieved from https://research.ou.nl/ws/portalfiles/portal/30774606/Roos_
de_B_IM9806_BPMIT_scriptie_Pure.pdf.

[11] B. Bender, B. Fabian, J. Haupt, S. Lessmann, T. Neumann, C. Thim, Track
and treat—Usage of e-mail tracking for newsletter individualization, in:
Paper Presented at the Proceedings of the 26th European Conference on
Information Systems (ECIS), Portsmouth, UK, 2018.

http://refhub.elsevier.com/S0306-4379(20)30147-2/sb1
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb1
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb1
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb2
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb2
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb2
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb2
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb2
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb3
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb3
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb3
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb4
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb4
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb4
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb4
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb4
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb6
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb6
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb6
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb6
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb6
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb6
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb6
https://nakedsecurity.sophos.com/2014/02/27/how-emails-can-be-used-to-track-your-location-and-how-to-stop-it/
https://nakedsecurity.sophos.com/2014/02/27/how-emails-can-be-used-to-track-your-location-and-how-to-stop-it/
https://nakedsecurity.sophos.com/2014/02/27/how-emails-can-be-used-to-track-your-location-and-how-to-stop-it/
https://nakedsecurity.sophos.com/2014/02/27/how-emails-can-be-used-to-track-your-location-and-how-to-stop-it/
https://nakedsecurity.sophos.com/2014/02/27/how-emails-can-be-used-to-track-your-location-and-how-to-stop-it/
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb8
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb8
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb8
https://research.ou.nl/ws/portalfiles/portal/30774606/Roos_de_B_IM9806_BPMIT_scriptie_Pure.pdf
https://research.ou.nl/ws/portalfiles/portal/30774606/Roos_de_B_IM9806_BPMIT_scriptie_Pure.pdf
https://research.ou.nl/ws/portalfiles/portal/30774606/Roos_de_B_IM9806_BPMIT_scriptie_Pure.pdf


B. Fabian, B. Bender, B. Hesseldieck et al. Information Systems 97 (2021) 101702
[12] J. Haupt, B. Bender, B. Fabian, S. Lessmann, Robust identification of email
tracking: A machine learning approach, European J. Oper. Res. 271 (1)
(2018) 341–356.

[13] B. Hesseldieck, B. Fabian, B. Bender, J. Haupt, S. Lessmann, Enterprise
Email Tracking Prevention Suite. GitHub Repository, 2020, Retrieved from
https://github.com/ben-fabian/enterprise_email_tracking_prevention.

[14] K. Peffers, T. Tuunanen, M.A. Rothenberger, S. Chatterjee, A design science
research methodology for information systems research, J. Manage. Inf.
Syst. 24 (3) (2007) 45–77.

[15] B. Bender, B. Fabian, J. Haupt, S. Lessmann, E-mail tracking: Status quo and
novel countermeasures, in: Paper Presented at the Proceedings of the 37th
International Conference on Information Systems (ICIS), Dublin, Ireland,
2016.

[16] Campaign Monitor, How do I create a printer-friendly email newsletter?,
2010, Retrieved from https://www.campaignmonitor.com/blog/post/3232/
how-do-i-create-a-printer-friendly-email-newsletter/.

[17] M. Agosti, G.M. Di Nunzio, Web Log Mining: A study of user sessions, in:
Paper presented at the 10th DELOS Thematic Workshop on Personalized
Access, Profile Management, and Context Awareness in Digital Libraries
(PersDL 2007), 2007.

[18] T. Ermakova, B. Fabian, B. Bender, K. Klimek, Web tracking – A literature
review on the state of research, in: Paper Presented at the The Hawaii
International Conference on System Sciences (HICSS 51), 2018.

[19] A. Javed, POSTER: A footprint of third-party tracking on mobile web, in:
Paper Presented at the Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, 2013, http://dl.acm.org/citation.
cfm?doid=2508859.2512521.

[20] C. Jensen, C. Sarkar, C. Jensen, C. Potts, Tracking website data-collection
and privacy practices with the iWatch web crawler, in: Paper Presented
at the Proceedings of the 3rd Symposium on Usable Privacy and Security,
2007.

[21] S. Mittal, User Privacy and the Evolution of Third-Party Tracking Mecha-
nisms on the World Wide Web, Stanford University, 2010, Retrieved from
https://purl.stanford.edu/hw648fn9717.

[22] J. Parra-Arnau, Pay-per-tracking: A collaborative masking model for web
browsing, Inf. Sci. 385–386 (2017) 96–124.

[23] A. Alsaid, D. Martin, Detecting web bugs with bugnosis: Privacy advocacy
through education, in: G. Goos, J. Hartmanis, J. van Leeuwen, R. Dingledine,
P. Syverson (Eds.), Privacy Enhancing Technologies, vol. 2482, Springer,
Berlin Heidelberg, 2003, pp. 13–26.

[24] F. Fonseca, R. Pinto, W. Meira, Increasing User’s Privacy Control Through
Flexible Web Bug Detection, 2005, http://ieeexplore.ieee.org/document/
1592379/.

[25] D. Martin, H. Wu, A. Alsaid, Hidden surveillance by Web sites: Web bugs
in contemporary use, Commun. ACM 46 (12) (2003) 258.

[26] A. Yamada, M. Hara, Y. Miyake, Web tracking site detection based on
temporal link analysis and automatic blacklist generation, J. Inf. Process.
19 (2011) 62–73.

[27] T. Bujlow, V. Carela-Espanol, J. Sole-Pareta, P. Barlet-Ros, A survey on web
tracking: Mechanisms, implications, and defenses, in: Proceedings of the
IEEE, 2017, pp. 1–35.

[28] P. Leon, B. Ur, R. Balebako, L. Cranor, R. Shay, Y. Wang, Why Johnny can’t
opt out: a usability evaluation of tools to limit online behavioral advertis-
ing, in: Paper Presented at the Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2012.

[29] I. Sanchez-Rola, X. Ugarte-Pedrero, I. Santos, P.G. Bringas, The web is
watching you: A comprehensive review of web-tracking techniques and
countermeasures, Log. J. IGPL 25 (1) (2017) 18–29.

[30] A. Bouguettaya, M.Y. Eltoweissy, Privacy on the web: facts, challenges, and
solutions, IEEE Secur. Privacy Mag. 1 (6) (2003) 40–49.

[31] W.T. Harding, A.J. Reed, R.L. Gray, Cookies and web bugs: What they are
and how they work together, Inf. Syst. Manag. 18 (3) (2001) 17–24.
13
[32] A. Bilos, D. Turkalj, I. Kelic, Open-rate controlled experiment in E-mail
marketing campaigns, Trziste 28 (1) (2016) 93–109.

[33] M. Hartemo, Email marketing in the era of the empowered consumer, J.
Res. Interact. Mark. 10 (3) (2016) 212–230.

[34] X. Luo, R. Nadanasabapathy, A.N. Zincir-Heywood, K. Gallant, J. Pedu-
ruge, Predictive analysis on tracking emails for targeted marketing, in:
N. Japkowicz, S. Matwin (Eds.), Discovery Science, vol. 9356, Springer
International Publishing, 2015, pp. 116–130.

[35] X. Zhang, V. Kumar, K. Cosguner, Dynamically managing a profitable email
marketing program, J. Mark. Res. (2017).

[36] A. Bonfrer, X. Drèze, Real-time evaluation of e-mail campaign performance,
Mark. Sci. 28 (2) (2009) 251–263.

[37] A.B.I. Hasouneh, M.A. Alqeed, Measuring the effectiveness of e-mail direct
marketing in building customer relationship, Int. J. Mark. Stud. 2 (1) (2010).

[38] M. Bhattacharyya, S. Hershkop, E. Eskin, MET: An experimental system for
malicious email tracking, in: Paper Presented at the Proceedings of the
2002 Workshop on New Security Paradigms, 2002.

[39] S.J. Stolfo, S. Hershkop, K. Wang, O. Nimeskern, C.-W. Hu, A behavior-
based approach to securing email systems, in: G. Goos, J. Hartmanis, J.
van Leeuwen, V. Gorodetsky, L. Popyack, V. Skormin (Eds.), Springer Berlin
Heidelberg, 2003, pp. 57–81.

[40] G.A. Grimes, M.G. Hough, M.L. Signorella, Email end users and spam:
relations of gender and age group to attitudes and actions, Comput. Hum.
Behav. 23 (1) (2007) 318–332.

[41] S. Hameed, T. Kloht, X. Fu, Identity based email sender authentication
for spam mitigation, in: Paper Presented at the Eighth International
Conference on Digital Information Management (ICDIM 2013), 2013, http:
//ieeexplore.ieee.org/document/6694015/.

[42] A. Herzberg, DNS-Based email sender authentication mechanisms: A
critical review, Comput. Secur. 28 (8) (2009) 731–742.

[43] X. Gu, M. Yang, C. Shi, Z. Ling, J. Luo, A novel attack to track users based
on the behavior patterns, Concurr. Comput.: Pract. Exper. 29 (6) (2017).

[44] J. Sammons, M. Cross, Email safety and security, in: The Basics of Cyber
Safety, Elsevier, 2017, pp. 75–86.

[45] N. Tsalis, A. Mylonas, D. Gritzalis, An intensive analysis of security and
privacy browser add-ons, in: C. Lambrinoudakis, A. Gabillon (Eds.), Risks
and Security of Internet and Systems, vol. 9572, Springer International
Publishing, 2016, pp. 258–273.

[46] J. Martin, Rapid Application Development, Macmillan Pub. Co.; Collier
Macmillan Canada; Maxwell Macmillan International, 1991.

[47] M.L. Despa, Comparative study on software development methodologies,
Database Syst. J. 5 (3) (2014) 37–56.

[48] N. Alshuqayran, N. Ali, R. Evans, A systematic mapping study in microser-
vice architecture, in: Paper Presented at the 2016 IEEE 9th International
Conference on Service-Oriented Computing and Applications (SOCA), 2016.

[49] J. Cook, The docker engine, in: Docker for Data Science, Apress, 2017, pp.
71–79.

[50] P. Krill, Why R? The pros and cons of the R language, 2015,
Retrieved from https://www.infoworld.com/article/2940864/application-
development/r-programming-language-statistical-data-analysis.html.

[51] D. Vohra, Docker services, in: Docker Management Design Patterns, Apress,
2017, pp. 55–84.

[52] P. Arijs, Docker usage statistics: Increased adoption by enterprises and
for production use, 2016, Retrieved from https://www.coscale.com/
blog/docker-usage-statistics-increased-adoption-by-enterprises-and-for-
production-use.

[53] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning:
Prediction, Inference and Data Mining, Springer-Verlag, New York, 2009.

[54] R. Braden, Requirements for internet hosts-communication layers
(2070-1721), 1989, Retrieved from https://tools.ietf.org/html/rfc1122.

[55] M. Sergeant, Large scale haraka users, 2018, Retrieved from https://haraka.
github.io/users.html.

http://refhub.elsevier.com/S0306-4379(20)30147-2/sb12
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb12
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb12
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb12
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb12
https://github.com/ben-fabian/enterprise_email_tracking_prevention
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb14
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb14
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb14
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb14
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb14
https://www.campaignmonitor.com/blog/post/3232/how-do-i-create-a-printer-friendly-email-newsletter/
https://www.campaignmonitor.com/blog/post/3232/how-do-i-create-a-printer-friendly-email-newsletter/
https://www.campaignmonitor.com/blog/post/3232/how-do-i-create-a-printer-friendly-email-newsletter/
http://dl.acm.org/citation.cfm?doid=2508859.2512521
http://dl.acm.org/citation.cfm?doid=2508859.2512521
http://dl.acm.org/citation.cfm?doid=2508859.2512521
https://purl.stanford.edu/hw648fn9717
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb22
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb22
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb22
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb23
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb23
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb23
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb23
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb23
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb23
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb23
http://ieeexplore.ieee.org/document/1592379/
http://ieeexplore.ieee.org/document/1592379/
http://ieeexplore.ieee.org/document/1592379/
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb25
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb25
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb25
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb26
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb26
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb26
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb26
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb26
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb29
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb29
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb29
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb29
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb29
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb30
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb30
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb30
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb31
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb31
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb31
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb32
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb32
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb32
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb33
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb33
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb33
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb34
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb35
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb35
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb35
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb36
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb36
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb36
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb37
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb37
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb37
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb39
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb39
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb39
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb39
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb39
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb39
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb39
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb40
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb40
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb40
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb40
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb40
http://ieeexplore.ieee.org/document/6694015/
http://ieeexplore.ieee.org/document/6694015/
http://ieeexplore.ieee.org/document/6694015/
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb42
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb42
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb42
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb43
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb43
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb43
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb44
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb44
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb44
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb45
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb45
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb45
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb45
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb45
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb45
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb45
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb46
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb46
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb46
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb47
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb47
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb47
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb49
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb49
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb49
https://www.infoworld.com/article/2940864/application-development/r-programming-language-statistical-data-analysis.html
https://www.infoworld.com/article/2940864/application-development/r-programming-language-statistical-data-analysis.html
https://www.infoworld.com/article/2940864/application-development/r-programming-language-statistical-data-analysis.html
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb51
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb51
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb51
https://www.coscale.com/blog/docker-usage-statistics-increased-adoption-by-enterprises-and-for-production-use
https://www.coscale.com/blog/docker-usage-statistics-increased-adoption-by-enterprises-and-for-production-use
https://www.coscale.com/blog/docker-usage-statistics-increased-adoption-by-enterprises-and-for-production-use
https://www.coscale.com/blog/docker-usage-statistics-increased-adoption-by-enterprises-and-for-production-use
https://www.coscale.com/blog/docker-usage-statistics-increased-adoption-by-enterprises-and-for-production-use
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb53
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb53
http://refhub.elsevier.com/S0306-4379(20)30147-2/sb53
https://tools.ietf.org/html/rfc1122
https://haraka.github.io/users.html
https://haraka.github.io/users.html
https://haraka.github.io/users.html

	Enterprise-grade protection against e-mail tracking
	Introduction
	Background and related work
	Solution objectives
	Design & development
	Prevention concept
	High-level design
	Software specification
	Technological building blocks
	Data flow
	Detection engine
	Scalability

	Demonstration and evaluation
	End-user perspective
	Software complexity
	Performance experiments
	Static code quality
	Evaluation against objectives

	Discussion
	Conclusion
	Declaration of competing interest
	References


